Switch to: References

Add citations

You must login to add citations.
  1. Contraction, Infinitary Quantifiers, and Omega Paradoxes.Bruno Da Ré & Lucas Rosenblatt - 2018 - Journal of Philosophical Logic 47 (4):611-629.
    Our main goal is to investigate whether the infinitary rules for the quantifiers endorsed by Elia Zardini in a recent paper are plausible. First, we will argue that they are problematic in several ways, especially due to their infinitary features. Secondly, we will show that even if these worries are somehow dealt with, there is another serious issue with them. They produce a truth-theoretic paradox that does not involve the structural rules of contraction.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Theory of Truthmaker Content I: Conjunction, Disjunction and Negation.Kit Fine - 2017 - Journal of Philosophical Logic 46 (6):625-674.
    I develop a basic theory of content within the framework of truthmaker semantics and, in the second part, consider some of the applications to subject matter, common content, logical subtraction and ground.
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • A computational study of cross-situational techniques for learning word-to-meaning mappings.Jeffrey Mark Siskind - 1996 - Cognition 61 (1-2):39-91.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • Weak typed Böhm theorem on IMLL.Satoshi Matsuoka - 2007 - Annals of Pure and Applied Logic 145 (1):37-90.
    In the Böhm theorem workshop on Crete, Zoran Petric called Statman’s “Typical Ambiguity theorem” the typed Böhm theorem. Moreover, he gave a new proof of the theorem based on set-theoretical models of the simply typed lambda calculus. In this paper, we study the linear version of the typed Böhm theorem on a fragment of Intuitionistic Linear Logic. We show that in the multiplicative fragment of intuitionistic linear logic without the multiplicative unit the weak typed Böhm theorem holds. The system IMLL (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sufficient conditions for cut elimination with complexity analysis.João Rasga - 2007 - Annals of Pure and Applied Logic 149 (1-3):81-99.
    Sufficient conditions for first-order-based sequent calculi to admit cut elimination by a Schütte–Tait style cut elimination proof are established. The worst case complexity of the cut elimination is analysed. The obtained upper bound is parameterized by a quantity related to the calculus. The conditions are general enough to be satisfied by a wide class of sequent calculi encompassing, among others, some sequent calculi presentations for the first order and the propositional versions of classical and intuitionistic logic, classical and intuitionistic modal (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Resource modalities in tensor logic.Paul-André Melliès & Nicolas Tabareau - 2010 - Annals of Pure and Applied Logic 161 (5):632-653.
    The description of resources in game semantics has never achieved the simplicity and precision of linear logic, because of the misleading conception that linear logic is more primitive than game semantics. Here, we defend the opposite view, and thus advocate that game semantics is conceptually more primitive than linear logic. This revised point of view leads us to introduce tensor logic, a primitive variant of linear logic where negation is not involutive. After formulating its categorical semantics, we interpret tensor logic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Naive Modus Ponens.Elia Zardini - 2013 - Journal of Philosophical Logic 42 (4):575-593.
    The paper is concerned with a logical difficulty which Lionel Shapiro’s deflationist theory of logical consequence (as well as the author’s favoured, non-deflationist theory) gives rise to. It is argued that Shapiro’s non-contractive approach to solving the difficulty, although correct in its broad outlines, is nevertheless extremely problematic in some of its specifics, in particular in its failure to validate certain intuitive rules and laws associated with the principle of modus ponens. An alternative non-contractive theory is offered which does not (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • (1 other version)Proof-Theoretic Semantics.Peter Schroeder-Heister - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Logic and Grammar.Joachim Lambek - 2012 - Studia Logica 100 (4):667-681.
    Grammar can be formulated as a kind of substructural propositional logic. In support of this claim, we survey bare Gentzen style deductive systems and two kinds of non-commutative linear logic: intuitionistic and compact bilinear logic. We also glance at their categorical refinements.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Incompatibility Semantics from Agreement.Daniele Porello - 2012 - Philosophia 40 (1):99-119.
    In this paper, I discuss the analysis of logic in the pragmatic approach recently proposed by Brandom. I consider different consequence relations, formalized by classical, intuitionistic and linear logic, and I will argue that the formal theory developed by Brandom, even if provides powerful foundational insights on the relationship between logic and discursive practices, cannot account for important reasoning patterns represented by non-monotonic or resource-sensitive inferences. Then, I will present an incompatibility semantics in the framework of linear logic which allow (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From if to bi.Samson Abramsky & Jouko Väänänen - 2009 - Synthese 167 (2):207 - 230.
    We take a fresh look at the logics of informational dependence and independence of Hintikka and Sandu and Väänänen, and their compositional semantics due to Hodges. We show how Hodges’ semantics can be seen as a special case of a general construction, which provides a context for a useful completeness theorem with respect to a wider class of models. We shed some new light on each aspect of the logic. We show that the natural propositional logic carried by the semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • An analysis of gödel's dialectica interpretation via linear logic.Paulo Oliva - 2008 - Dialectica 62 (2):269–290.
    This article presents an analysis of Gödel's dialectica interpretation via a refinement of intuitionistic logic known as linear logic. Linear logic comes naturally into the picture once one observes that the structural rule of contraction is the main cause of the lack of symmetry in Gödel's interpretation. We use the fact that the dialectica interpretation of intuitionistic logic can be viewed as a composition of Girard's embedding of intuitionistic logic into linear logic followed by de Paiva's dialectica interpretation of linear (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Meeting strength in substructural logics.Yde Venema - 1995 - Studia Logica 54 (1):3 - 32.
    This paper contributes to the theory of hybrid substructural logics, i.e. weak logics given by a Gentzen-style proof theory in which there is only alimited possibility to use structural rules. Following the literture, we use an operator to mark formulas to which the extra structural rules may be applied. New in our approach is that we do not see this as a modality, but rather as themeet of the marked formula with a special typeQ. In this way we can make (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bounded contraction and Gentzen-style formulation of łukasiewicz logics.Andreja Prijatelj - 1996 - Studia Logica 57 (2-3):437 - 456.
    In this paper, we consider multiplicative-additive fragments of affine propositional classical linear logic extended with n-contraction. To be specific, n-contraction (n 2) is a version of the contraction rule where (n+ 1) occurrences of a formula may be contracted to n occurrences. We show that expansions of the linear models for (n + 1)- valued ukasiewicz logic are models for the multiplicative-additive classical linear logic, its affine version and their extensions with n-contraction. We prove the finite axiomatizability for the classes (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Connectification forn-contraction.Andreja Prijatelj - 1995 - Studia Logica 54 (2):149 - 171.
    In this paper, we introduce connectification operators for intuitionistic and classical linear algebras corresponding to linear logic and to some of its extensions withn-contraction. In particular,n-contraction (n2) is a version of the contraction rule, wheren+1 occurrences of a formula may be contracted ton occurrences. Since cut cannot be eliminated from the systems withn-contraction considered most of the standard proof-theoretic techniques to investigate meta-properties of those systems are useless. However, by means of connectification we establish the disjunction property for both intuitionistic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Monoid based semantics for linear formulas.W. P. R. Mitchell & H. Simmons - 2001 - Journal of Symbolic Logic 66 (4):1597-1619.
    Each Girard quantale (i.e., commutative quantale with a selected dualizing element) provides a support for a semantics for linear propositional formulas (but not for linear derivations). Several constructions of Girard quantales are known. We give two more constructions, one using an arbitrary partially ordered monoid and one using a partially ordered group (both commutative). In both cases the semantics can be controlled be a relation between pairs of elements of the support and formulas. This gives us a neat way of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Phase semantics and Petri net interpretation for resource-sensitive strong negation.Norihiro Kamide - 2006 - Journal of Logic, Language and Information 15 (4):371-401.
    Wansing’s extended intuitionistic linear logic with strong negation, called WILL, is regarded as a resource-conscious refinment of Nelson’s constructive logics with strong negation. In this paper, (1) the completeness theorem with respect to phase semantics is proved for WILL using a method that simultaneously derives the cut-elimination theorem, (2) a simple correspondence between the class of Petri nets with inhibitor arcs and a fragment of WILL is obtained using a Kripke semantics, (3) a cut-free sequent calculus for WILL, called twist (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Conditionals and consequences.Gregory Wheeler, Henry E. Kyburg & Choh Man Teng - 2007 - Journal of Applied Logic 5 (4):638-650.
    We examine the notion of conditionals and the role of conditionals in inductive logics and arguments. We identify three mistakes commonly made in the study of, or motivation for, non-classical logics. A nonmonotonic consequence relation based on evidential probability is formulated. With respect to this acceptance relation some rules of inference of System P are unsound, and we propose refinements that hold in our framework.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Algebraic logic for classical conjunction and disjunction.Josep M. Font & Ventura Verdú - 1991 - Studia Logica 50 (3):391 - 419.
    In this paper we study the relations between the fragment L of classical logic having just conjunction and disjunction and the variety D of distributive lattices, within the context of Algebraic Logic. We prove that these relations cannot be fully expressed either with the tools of Blok and Pigozzi's theory of algebraizable logics or with the use of reduced matrices for L. However, these relations can be naturally formulated when we introduce a new notion of model of a sequent calculus. (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A double deduction system for quantum logic based on natural deduction.Yannis Delmas-Rigoutsos - 1997 - Journal of Philosophical Logic 26 (1):57-67.
    The author presents a deduction system for Quantum Logic. This system is a combination of a natural deduction system and rules based on the relation of compatibility. This relation is the logical correspondant of the commutativity of observables in Quantum Mechanics or perpendicularity in Hilbert spaces. Contrary to the system proposed by Gibbins and Cutland, the natural deduction part of the system is pure: no algebraic artefact is added. The rules of the system are the rules of Classical Natural Deduction (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Extending Lambek grammars to basic categorial grammars.Wojciech Buszkowski - 1996 - Journal of Logic, Language and Information 5 (3-4):279-295.
    Pentus (1992) proves the equivalence of LCG's and CFG's, and CFG's are equivalent to BCG's by the Gaifman theorem (Bar-Hillel et al., 1960). This paper provides a procedure to extend any LCG to an equivalent BCG by affixing new types to the lexicon; a procedure of that kind was proposed as early, as Cohen (1967), but it was deficient (Buszkowski, 1985). We use a modification of Pentus' proof and a new proof of the Gaifman theorem on the basis of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modalities in linear logic weaker than the exponential “of course”: Algebraic and relational semantics. [REVIEW]Anna Bucalo - 1994 - Journal of Logic, Language and Information 3 (3):211-232.
    We present a semantic study of a family of modal intuitionistic linear systems, providing various logics with both an algebraic semantics and a relational semantics, to obtain completeness results. We call modality a unary operator on formulas which satisfies only one rale (regularity), and we consider any subsetW of a list of axioms which defines the exponential of course of linear logic. We define an algebraic semantics by interpreting the modality as a unary operation on an IL-algebra. Then we introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, but have been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Laws of Thought and the Laws of Truth as Two Sides of One Coin.Ulf Hlobil - 2022 - Journal of Philosophical Logic 52 (1):313-343.
    Some think that logic concerns the “laws of truth”; others that logic concerns the “laws of thought.” This paper presents a way to reconcile both views by building a bridge between truth-maker theory, à la Fine, and normative bilateralism, à la Restall and Ripley. The paper suggests a novel way of understanding consequence in truth-maker theory and shows that this allows us to identify a common structure shared by truth-maker theory and normative bilateralism. We can thus transfer ideas from normative (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logic and Majority Voting.Ryo Takemura - 2021 - Journal of Philosophical Logic 51 (2):347-382.
    To investigate the relationship between logical reasoning and majority voting, we introduce logic with groups Lg in the style of Gentzen’s sequent calculus, where every sequent is indexed by a group of individuals. We also introduce the set-theoretical semantics of Lg, where every formula is interpreted as a certain closed set of groups whose members accept that formula. We present the cut-elimination theorem, and the soundness and semantic completeness theorems of Lg. Then, introducing an inference rule representing majority voting to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Natural Deduction Bottom Up.Ernst Zimmermann - 2021 - Journal of Logic, Language and Information 30 (3):601-631.
    The paper introduces a new type of rules into Natural Deduction, elimination rules by composition. Elimination rules by composition replace usual elimination rules in the style of disjunction elimination and give a more direct treatment of additive disjunction, multiplicative conjunction, existence quantifier and possibility modality. Elimination rules by composition have an enormous impact on proof-structures of deductions: they do not produce segments, deduction trees remain binary branching, there is no vacuous discharge, there is only few need of permutations. This new (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Multiplicative-Additive Lambek Calculus with Subexponential and Bracket Modalities.Max Kanovich, Stepan Kuznetsov & Andre Scedrov - 2021 - Journal of Logic, Language and Information 30 (1):31-88.
    We give a proof-theoretic and algorithmic complexity analysis for systems introduced by Morrill to serve as the core of the CatLog categorial grammar parser. We consider two recent versions of Morrill’s calculi, and focus on their fragments including multiplicative (Lambek) connectives, additive conjunction and disjunction, brackets and bracket modalities, and the! subexponential modality. For both systems, we resolve issues connected with the cut rule and provide necessary modifications, after which we prove admissibility of cut (cut elimination theorem). We also prove (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Studies in the logic of K -onfirmation.Clayton Peterson - 2019 - Philosophical Studies 176 (2):437-471.
    This research article revisits Hempel’s logic of confirmation in light of recent developments in categorical proof theory. While Hempel advocated several logical conditions in favor of a purely syntactical definition of a general non-quantitative concept of confirmation, we show how these criteria can be associated to specific logical properties of monoidal modal deductive systems. In addition, we show that many problems in confirmation logic, such as the tacked disjunction, the problem of weakening with background knowledge and the problem of irrelevant (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logical Consequence and the Paradoxes.Edwin Mares & Francesco Paoli - 2014 - Journal of Philosophical Logic 43 (2-3):439-469.
    We group the existing variants of the familiar set-theoretical and truth-theoretical paradoxes into two classes: connective paradoxes, which can in principle be ascribed to the presence of a contracting connective of some sort, and structural paradoxes, where at most the faulty use of a structural inference rule can possibly be blamed. We impute the former to an equivocation over the meaning of logical constants, and the latter to an equivocation over the notion of consequence. Both equivocation sources are tightly related, (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Type Logics and Pregroups.Wojciech Buszkowski - 2007 - Studia Logica 87 (2-3):145-169.
    We discuss the logic of pregroups, introduced by Lambek [34], and its connections with other type logics and formal grammars. The paper contains some new ideas and results: the cut-elimination theorem and a normalization theorem for an extended system of this logic, its P-TIME decidability, its interpretation in L1, and a general construction of (preordered) bilinear algebras and pregroups whose universe is an arbitrary monoid.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Adding logic to the toolbox of molecular biology.Giovanni Boniolo, Marcello D’Agostino, Mario Piazza & Gabriele Pulcini - 2015 - European Journal for Philosophy of Science 5 (3):399-417.
    The aim of this paper is to argue that logic can play an important role in the “toolbox” of molecular biology. We show how biochemical pathways, i.e., transitions from a molecular aggregate to another molecular aggregate, can be viewed as deductive processes. In particular, our logical approach to molecular biology — developed in the form of a natural deduction system — is centered on the notion of Curry-Howard isomorphism, a cornerstone in nineteenth-century proof-theory.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Sentence connectives in formal logic.Lloyd Humberstone - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Coherence for star-autonomous categories.Kosta Došen & Zoran Petrić - 2006 - Annals of Pure and Applied Logic 141 (1):225-242.
    This paper presents a coherence theorem for star-autonomous categories exactly analogous to Kelly and Mac Lane’s coherence theorem for symmetric monoidal closed categories. The proof of this theorem is based on a categorial cut-elimination result, which is presented in some detail.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The three dimensions of proofs.Yves Guiraud - 2006 - Annals of Pure and Applied Logic 141 (1):266-295.
    In this document, we study a 3-polygraphic translation for the proofs of SKS, a formal system for classical propositional logic. We prove that the free 3-category generated by this 3-polygraph describes the proofs of classical propositional logic modulo structural bureaucracy. We give a 3-dimensional generalization of Penrose diagrams and use it to provide several pictures of a proof. We sketch how local transformations of proofs yield a non contrived example of 4-dimensional rewriting.
    Download  
     
    Export citation  
     
    Bookmark  
  • Local computation in linear logic.Ugo Solitro & Silvio Valentini - 1993 - Mathematical Logic Quarterly 39 (1):201-212.
    This work deals with the exponential fragment of Girard's linear logic without the contraction rule, a logical system which has a natural relation with the direct logic . A new sequent calculus for this logic is presented in order to remove the weakening rule and recover its behavior via a special treatment of the propositional constants, so that the process of cut-elimination can be performed using only “local” reductions. Hence a typed calculus, which admits only local rewriting rules, can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Softness of MALL proof-structures and a correctness criterion with Mix.Masahiro Hamano - 2004 - Archive for Mathematical Logic 43 (6):751-794.
    We show that every MALL proof-structure [9] satisfies the property of softness, originally a categorical notion introduced by Joyal. Furthermore, we show that the notion of hereditary softness precisely captures Girard’s algebraic restriction of the technical condition on proof-structures. Relying on this characterization, we prove a MALL+Mix sequentialization theorem by a proof-theoretical method, using Girard’s notion of jump. Our MALL+Mix correctness criterion subsumes the Danos/Fleury-Retoré criterion [6] for MLL+Mix.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Displacement Calculus.Glyn Morrill, Oriol Valentín & Mario Fadda - 2011 - Journal of Logic, Language and Information 20 (1):1-48.
    If all dependent expressions were adjacent some variety of immediate constituent analysis would suffice for grammar, but syntactic and semantic mismatches are characteristic of natural language; indeed this is a, or the, central problem in grammar. Logical categorial grammar reduces grammar to logic: an expression is well-formed if and only if an associated sequent is a theorem of a categorial logic. The paradigmatic categorial logic is the Lambek calculus, but being a logic of concatenation the Lambek calculus can only capture (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Syllogisms in Rudimentary Linear Logic, Diagrammatically.Ruggero Pagnan - 2013 - Journal of Logic, Language and Information 22 (1):71-113.
    We present a reading of the traditional syllogistics in a fragment of the propositional intuitionistic multiplicative linear logic and prove that with respect to a diagrammatic logical calculus that we introduced in a previous paper, a syllogism is provable in such a fragment if and only if it is diagrammatically provable. We extend this result to syllogistics with complemented terms à la De Morgan, with respect to a suitable extension of the diagrammatic reasoning system for the traditional case and a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Contextual Deduction Theorems.J. G. Raftery - 2011 - Studia Logica 99 (1-3):279-319.
    Logics that do not have a deduction-detachment theorem (briefly, a DDT) may still possess a contextual DDT —a syntactic notion introduced here for arbitrary deductive systems, along with a local variant. Substructural logics without sentential constants are natural witnesses to these phenomena. In the presence of a contextual DDT, we can still upgrade many weak completeness results to strong ones, e.g., the finite model property implies the strong finite model property. It turns out that a finitary system has a contextual (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Displaying and deciding substructural logics 1: Logics with contraposition.Greg Restall - 1998 - Journal of Philosophical Logic 27 (2):179-216.
    Many logics in the relevant family can be given a proof theory in the style of Belnap's display logic. However, as originally given, the proof theory is essentially more expressive than the logics they seek to model. In this paper, we consider a modified proof theory which more closely models relevant logics. In addition, we use this proof theory to show decidability for a large range of substructural logics.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Investigations into a left-structural right-substructural sequent calculus.Lloyd Humberstone - 2007 - Journal of Logic, Language and Information 16 (2):141-171.
    We study a multiple-succedent sequent calculus with both of the structural rules Left Weakening and Left Contraction but neither of their counterparts on the right, for possible application to the treatment of multiplicative disjunction against the background of intuitionistic logic. We find that, as Hirokawa dramatically showed in a 1996 paper with respect to the rules for implication, the rules for this connective render derivable some new structural rules, even though, unlike the rules for implication, these rules are what we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Cut and pay.Marcelo Finger & Dov Gabbay - 2006 - Journal of Logic, Language and Information 15 (3):195-218.
    In this paper we study families of resource aware logics that explore resource restriction on rules; in particular, we study the use of controlled cut-rule and introduce three families of parameterised logics that arise from different ways of controlling the use of cut. We start with a formulation of classical logic in which cut is non-eliminable and then impose restrictions on the use of cut. Three Cut-and-Pay families of logics are presented, and it is shown that each family provides an (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Fibred semantics for feature-based grammar logic.Jochen Dörre, Esther König & Dov Gabbay - 1996 - Journal of Logic, Language and Information 5 (3-4):387-422.
    This paper gives a simple method for providing categorial brands of feature-based unification grammars with a model-theoretic semantics. The key idea is to apply the paradigm of fibred semantics (or layered logics, see Gabbay (1990)) in order to combine the two components of a feature-based grammar logic. We demonstrate the method for the augmentation of Lambek categorial grammar with Kasper/Rounds-style feature logic. These are combined by replacing (or annotating) atomic formulas of the first logic, i.e. the basic syntactic types, by (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logical Instrumentalism and Anti-exceptionalism about Logic.Leon Commandeur - forthcoming - Erkenntnis.
    This paper critically examines logical instrumentalism as it has been put forth recently in the anti-exceptionalism about logic debate. I will argue that if one wishes to uphold the claim that logic is significantly similar to science, as the anti-exceptionalists have it, then logical instrumentalism cannot be what previous authors have taken it to be. The reason for this, I will argue, is that as the position currently stands, first, it reduces to a trivial claim about the instrumental value of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Affine logic for constructive mathematics.Michael Shulman - 2022 - Bulletin of Symbolic Logic 28 (3):327-386.
    We show that numerous distinctive concepts of constructive mathematics arise automatically from an “antithesis” translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of some classical concepts using the choice between multiplicative and additive affine connectives. Affine logic and the antithesis construction thus systematically “constructivize” classical definitions, handling the resulting bookkeeping automatically.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Affordances and their ontological core.Fumiaki Toyoshima, Adrien Barton & Jean-François Ethier - 2022 - Applied ontology 17 (2):285-320.
    The notion of affordance remains elusive, notwithstanding its importance for the representation of agency, cognition, and behaviors. This paper lays down a foundation for an ontology of affordances by elaborating the idea of “core affordance” which would serve as a common ground for explaining existing diverse conceptions of affordances and their interrelationships. For this purpose, it analyzes M. T. Turvey’s dispositional theory of affordances in light of a formal ontology of dispositions. Consequently, two kinds of so-called “core affordances” are proposed: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Substructural approaches to paradox: an introduction to the special issue.Elia Zardini - 2021 - Synthese 199 (3):493-525.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Axiom of Choice and the Partition Principle from Dialectica Categories.Samuel G. Da Silva - forthcoming - Logic Journal of the IGPL.
    The method of morphisms is a well-known application of Dialectica categories to set theory. In a previous work, Valeria de Paiva and the author have asked how much of the Axiom of Choice is needed in order to carry out the referred applications of such method. In this paper, we show that, when considered in their full generality, those applications of Dialectica categories give rise to equivalents of either the Axiom of Choice or Partition Principle —which is a consequence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An ecumenical notion of entailment.Elaine Pimentel, Luiz Carlos Pereira & Valeria de Paiva - 2019 - Synthese 198 (S22):5391-5413.
    Much has been said about intuitionistic and classical logical systems since Gentzen’s seminal work. Recently, Prawitz and others have been discussing how to put together Gentzen’s systems for classical and intuitionistic logic in a single unified system. We call Prawitz’ proposal the Ecumenical System, following the terminology introduced by Pereira and Rodriguez. In this work we present an Ecumenical sequent calculus, as opposed to the original natural deduction version, and state some proof theoretical properties of the system. We reason that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Coherent phase spaces. Semiclassical semantics.Sergey Slavnov - 2005 - Annals of Pure and Applied Logic 131 (1-3):177-225.
    The category of coherent phase spaces introduced by the author is a refinement of the symplectic “category” of A. Weinstein. This category is *-autonomous and thus provides a denotational model for Multiplicative Linear Logic. Coherent phase spaces are symplectic manifolds equipped with a certain extra structure of “coherence”. They may be thought of as “infinitesimal” analogues of familiar coherent spaces of Linear Logic. The role of cliques is played by Lagrangian submanifolds of ambient spaces. Physically, a symplectic manifold is the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation