Switch to: References

Citations of:

What is Mathematics, Really?

New York: Oxford University Press (1997)

Add citations

You must login to add citations.
  1. Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • (1 other version)Platonism in the Philosophy of Mathematics.Øystein Linnebo - forthcoming - Stanford Encyclopedia of Philosophy.
    Platonism about mathematics (or mathematical platonism) isthe metaphysical view that there are abstract mathematical objectswhose existence is independent of us and our language, thought, andpractices. Just as electrons and planets exist independently of us, sodo numbers and sets. And just as statements about electrons and planetsare made true or false by the objects with which they are concerned andthese objects' perfectly objective properties, so are statements aboutnumbers and sets. Mathematical truths are therefore discovered, notinvented., Existence. There are mathematical objects.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • The Mathematical Universe.Max Tegmark - 2007 - Foundations of Physics 38 (2):101-150.
    I explore physics implications of the External Reality Hypothesis (ERH) that there exists an external physical reality completely independent of us humans. I argue that with a sufficiently broad definition of mathematics, it implies the Mathematical Universe Hypothesis (MUH) that our physical world is an abstract mathematical structure. I discuss various implications of the ERH and MUH, ranging from standard physics topics like symmetries, irreducible representations, units, free parameters, randomness and initial conditions to broader issues like consciousness, parallel universes and (...)
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • Epistemic injustice in mathematics.Colin Jakob Rittberg, Fenner Stanley Tanswell & Jean Paul Van Bendegem - 2020 - Synthese 197 (9):3875-3904.
    We investigate how epistemic injustice can manifest itself in mathematical practices. We do this as both a social epistemological and virtue-theoretic investigation of mathematical practices. We delineate the concept both positively—we show that a certain type of folk theorem can be a source of epistemic injustice in mathematics—and negatively by exploring cases where the obstacles to participation in a mathematical practice do not amount to epistemic injustice. Having explored what epistemic injustice in mathematics can amount to, we use the concept (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Mathematical explanation: Problems and prospects.Paolo Mancosu - 2001 - Topoi 20 (1):97-117.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • International Handbook of Research in History, Philosophy and Science Teaching.Michael R. Matthews (ed.) - 2014 - Springer.
    This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Social constructivism in mathematics? The promise and shortcomings of Julian Cole’s institutional account.Jenni Rytilä - 2021 - Synthese 199 (3-4):11517-11540.
    The core idea of social constructivism in mathematics is that mathematical entities are social constructs that exist in virtue of social practices, similar to more familiar social entities like institutions and money. Julian C. Cole has presented an institutional version of social constructivism about mathematics based on John Searle’s theory of the construction of the social reality. In this paper, I consider what merits social constructivism has and examine how well Cole’s institutional account meets the challenge of accounting for the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Speech acts in mathematics.Marco Ruffino, Luca San Mauro & Giorgio Venturi - 2020 - Synthese 198 (10):10063-10087.
    We offer a novel picture of mathematical language from the perspective of speech act theory. There are distinct speech acts within mathematics, and, as we intend to show, distinct illocutionary force indicators as well. Even mathematics in its most formalized version cannot do without some such indicators. This goes against a certain orthodoxy both in contemporary philosophy of mathematics and in speech act theory. As we will comment, the recognition of distinct illocutionary acts within logic and mathematics and the incorporation (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Naturalism in mathematics and the authority of philosophy.Alexander Paseau - 2005 - British Journal for the Philosophy of Science 56 (2):377-396.
    Naturalism in the philosophy of mathematics is the view that philosophy cannot legitimately gainsay mathematics. I distinguish between reinterpretation and reconstruction naturalism: the former states that philosophy cannot legitimately sanction a reinterpretation of mathematics (i.e. an interpretation different from the standard one); the latter that philosophy cannot legitimately change standard mathematics (as opposed to its interpretation). I begin by showing that neither form of naturalism is self-refuting. I then focus on reinterpretation naturalism, which comes in two forms, and examine the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Philosophy of mathematics: Making a fresh start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A Phenomenology of Race in Frege's Logic.Joshua M. Hall - forthcoming - Humanities Bulletin.
    This article derives from a project attempting to show that Western formal logic, from Aristotle onward, has both been partially constituted by, and partially constitutive of, what has become known as racism. In the present article, I will first discuss, in light of Frege’s honorary role as founder of the philosophy of mathematics, Reuben Hersh’s What is Mathematics, Really? Second, I will explore how the infamous section of Frege’s 1924 diary (specifically the entries from March 10 to April 9) supports (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fitting Feelings and Elegant Proofs: On the Psychology of Aesthetic Evaluation in Mathematics.Cain Todd - 2017 - Philosophia Mathematica:nkx007.
    ABSTRACT This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of representing and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Diagrams in Mathematics.Carlo Cellucci - 2019 - Foundations of Science 24 (3):583-604.
    In the last few decades there has been a revival of interest in diagrams in mathematics. But the revival, at least at its origin, has been motivated by adherence to the view that the method of mathematics is the axiomatic method, and specifically by the attempt to fit diagrams into the axiomatic method, translating particular diagrams into statements and inference rules of a formal system. This approach does not deal with diagrams qua diagrams, and is incapable of accounting for the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Phenomenology and mathematical practice.Mary Leng - 2002 - Philosophia Mathematica 10 (1):3-14.
    A phenomenological approach to mathematical practice is sketched out, and some problems with this sort of approach are considered. The approach outlined takes mathematical practices as its data, and seeks to provide an empirically adequate philosophy of mathematics based on observation of these practices. Some observations are presented, based on two case studies of some research into the classification of C*-algebras. It is suggested that an anti-realist account of mathematics could be developed on the basis of these and other studies, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Is Mathematics Problem Solving or Theorem Proving?Carlo Cellucci - 2017 - Foundations of Science 22 (1):183-199.
    The question that is the subject of this article is not intended to be a sociological or statistical question about the practice of today’s mathematicians, but a philosophical question about the nature of mathematics, and specifically the method of mathematics. Since antiquity, saying that mathematics is problem solving has been an expression of the view that the method of mathematics is the analytic method, while saying that mathematics is theorem proving has been an expression of the view that the method (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematics, ethics and purism: an application of MacIntyre’s virtue theory.Paul Ernest - 2020 - Synthese 199 (1-2):3137-3167.
    A traditional problem of ethics in mathematics is the denial of social responsibility. Pure mathematics is viewed as neutral and value free, and therefore free of ethical responsibility. Applications of mathematics are seen as employing a neutral set of tools which, of themselves, are free from social responsibility. However, mathematicians are convinced they know what constitutes good mathematics. Furthermore many pure mathematicians are committed to purism, the ideology that values purity above applications in mathematics, and some historical reasons for this (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematics and fiction II: Analogy.Robert Thomas - 2002 - Logique Et Analyse 45:185-228.
    The object of this paper is to study the analogy, drawn both positively and negatively, between mathematics and fiction. The analogy is more subtle and interesting than fictionalism, which was discussed in part I. Because analogy is not common coin among philosophers, this particular analogy has been discussed or mentioned for the most part just in terms of specific similarities that writers have noticed and thought worth mentioning without much attention's being paid to the larger picture. I intend with this (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Mathematical Wit and Mathematical Cognition.Andrew Aberdein - 2013 - Topics in Cognitive Science 5 (2):231-250.
    The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, which are essential (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Top-Down and Bottom-Up Philosophy of Mathematics.Carlo Cellucci - 2013 - Foundations of Science 18 (1):93-106.
    The philosophy of mathematics of the last few decades is commonly distinguished into mainstream and maverick, to which a ‘third way’ has been recently added, the philosophy of mathematical practice. In this paper the limitations of these trends in the philosophy of mathematics are pointed out, and it is argued that they are due to the fact that all of them are based on a top-down approach, that is, an approach which explains the nature of mathematics in terms of some (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Understanding programming languages.Raymond Turner - 2007 - Minds and Machines 17 (2):203-216.
    We document the influence on programming language semantics of the Platonism/formalism divide in the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Early Years Mathematics Education: the Missing Link.Boris Čulina - 2024 - Philosophy of Mathematics Education Journal 35 (41).
    In this article, modern standards of early years mathematics education are criticized and a proposal for change is presented. Today's early years mathematics education standards rest on a view of mathematics that became obsolete already at the end of the 19th century while the spirit of children's mathematics is precisely the spirit of modern mathematics. The proposal for change is not a return to the “new mathematics” movement, but something different.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The Significance of Evidence-based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences (2nd edition).Bhupinder Singh Anand - 2024 - Mumbai: DBA Publishing (Second Edition).
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Experimental mathematics, computers and the a priori.Mark McEvoy - 2013 - Synthese 190 (3):397-412.
    In recent decades, experimental mathematics has emerged as a new branch of mathematics. This new branch is defined less by its subject matter, and more by its use of computer assisted reasoning. Experimental mathematics uses a variety of computer assisted approaches to verify or prove mathematical hypotheses. For example, there is “number crunching” such as searching for very large Mersenne primes, and showing that the Goldbach conjecture holds for all even numbers less than 2 × 1018. There are “verifications” of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Beyond the axioms: The question of objectivity in mathematics.W. TaitW - 2001 - Philosophia Mathematica 9 (1):21-36.
    This paper contains a defense against anti-realism in mathematics in the light both of incompleteness and of the fact that mathematics is a ‘cultural artifact.’. Anti-realism (here) is the view that theorems, say, of aritltmetic cannot be taken at face value to express true propositions about the system of numbers but must be reconstrued to be about somctliiiig else or about nothing at all. A ‘bite-the-bullet’ aspect of the defease is that, adopting new axioms, liitherto independent, is not. a matter (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Reliability of Randomized Algorithms.D. Fallis - 2000 - British Journal for the Philosophy of Science 51 (2):255-271.
    Recently, certain philosophers of mathematics (Fallis [1997]; Womack and Farach [(1997]) have argued that there are no epistemic considerations that should stop mathematicians from using probabilistic methods to establish that mathematical propositions are true. However, mathematicians clearly should not use methods that are unreliable. Unfortunately, due to the fact that randomized algorithms are not really random in practice, there is reason to doubt their reliability. In this paper, I analyze the prospects for establishing that randomized algorithms are reliable. I end (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Fitting Feelings and Elegant Proofs: On the Psychology of Aesthetic Evaluation in Mathematics.Cain Todd - 2018 - Philosophia Mathematica 26 (2):211-233.
    This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of representing and assessing (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Note on the Relation Between Formal and Informal Proof.Jörgen Sjögren - 2010 - Acta Analytica 25 (4):447-458.
    Using Carnap’s concept explication, we propose a theory of concept formation in mathematics. This theory is then applied to the problem of how to understand the relation between the concepts formal proof and informal, mathematical proof.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proof, Semiotics, and the Computer: On the Relevance and Limitation of Thought Experiment in Mathematics.Johannes Lenhard - 2022 - Axiomathes 32 (1):29-42.
    This contribution defends two claims. The first is about why thought experiments are so relevant and powerful in mathematics. Heuristics and proof are not strictly and, therefore, the relevance of thought experiments is not contained to heuristics. The main argument is based on a semiotic analysis of how mathematics works with signs. Seen in this way, formal symbols do not eliminate thought experiments (replacing them by something rigorous), but rather provide a new stage for them. The formal world resembles the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Creative Growth of Mathematics.Jean Paul van Bendegem - 1999 - Philosophica 63 (1).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematics as the art of abstraction.Richard L. Epstein - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 257--289.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some Aspects of Understanding Mathematical Reality: Existence, Platonism, Discovery.Vladimir Drekalović - 2015 - Axiomathes 25 (3):313-333.
    The sum of all objects of a science, the objects’ features and their mutual relations compose the reality described by that sense. The reality described by mathematics consists of objects such as sets, functions, algebraic structures, etc. Generally speaking, the use of terms reality and existence, in relation to describing various objects’ characteristics, usually implies an employment of physical and perceptible attributes. This is not the case in mathematics. Its reality and the existence of its objects, leaving aside its application, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Applicability of Mathematics as a Philosophical Problem: Mathematization as Exploration.Johannes Lenhard & Michael Otte - 2018 - Foundations of Science 23 (4):719-737.
    This paper discerns two types of mathematization, a foundational and an explorative one. The foundational perspective is well-established, but we argue that the explorative type is essential when approaching the problem of applicability and how it influences our conception of mathematics. The first part of the paper argues that a philosophical transformation made explorative mathematization possible. This transformation took place in early modernity when sense acquired partial independence from reference. The second part of the paper discusses a series of examples (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Journal of Philosophical Investigations.M. Asgahri - 2015 - Journal of Philosophical Investigations 9 (17):1-227.
    open journal of Philosophical Investigations (PI) is an international journal dedicated to the latest advancements in philosophy. The goal of this journal is to provide a platform for academicians all over the world to promote, share, and discuss various new issues and developments in different areas of philosophy. -/- All manuscripts to be prepared in English or Persian and are subject to a rigorous and fair peer-review process. Generally, accepted papers will appear online. The journal publishes papers including the following (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuition in Mathematics: a Perceptive Experience.Alexandra Van-Quynh - 2017 - Journal of Phenomenological Psychology 48 (1):1-38.
    This study applied a method of assisted introspection to investigate the phenomenology of mathematical intuition arousal. The aim was to propose an essential structure for the intuitive experience of mathematics. To achieve an intersubjective comparison of different experiences, several contemporary mathematicians were interviewed in accordance with the elicitation interview method in order to collect pinpoint experiential descriptions. Data collection and analysis was then performed using steps similar to those outlined in the descriptive phenomenological method that led to a generic structure (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Methodology for Teaching Logic-Based Skills to Mathematics Students.Arnold Cusmariu - 2016 - Symposion: Theoretical and Applied Inquiries in Philosophy and Social Sciences 3 (3):259-292.
    Mathematics textbooks teach logical reasoning by example, a practice started by Euclid; while logic textbooks treat logic as a subject in its own right without practical application to mathematics. Stuck in the middle are students seeking mathematical proficiency and educators seeking to provide it. To assist them, the article explains in practical detail how to teach logic-based skills such as: making mathematical reasoning fully explicit; moving from step to step in a mathematical proof in logically correct ways; and checking to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • No Magic: From Phenomenology of Practice to Social Ontology of Mathematics.Mirja Hartimo & Jenni Rytilä - 2023 - Topoi 42 (1):283-295.
    The paper shows how to use the Husserlian phenomenological method in contemporary philosophical approaches to mathematical practice and mathematical ontology. First, the paper develops the phenomenological approach based on Husserl's writings to obtain a method for understanding mathematical practice. Then, to put forward a full-fledged ontology of mathematics, the phenomenological approach is complemented with social ontological considerations. The proposed ontological account sees mathematical objects as social constructions in the sense that they are products of culturally shared and historically developed practices. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • .[author unknown] - unknown
    Download  
     
    Export citation  
     
    Bookmark  
  • The Mark of Understanding: In Defense of an Ability Account.Sven Delarivière & Bart Van Kerkhove - 2021 - Axiomathes 31 (5):619-648.
    Understanding is a valued trait in any epistemic practice, scientific or not. Yet, when it comes to characterizing its nature, the notion has not received the philosophical attention it deserves. We have set ourselves three tasks in this paper. First, we defend the importance of this endeavor. Second, we consider and criticize a number of proposals to this effect. Third, we defend an alternative account, focusing on abilities as the proper mark of understanding.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics: The science of patterns by Keith Devlin.Olga Yiparaki - 1999 - Complexity 4 (4):55-60.
    Download  
     
    Export citation  
     
    Bookmark  
  • Deleuze and Mathematics.Simon B. Duffy - 2006 - In Simon Duffy (ed.), Virtual Mathematics: the logic of difference. Clinamen.
    The collection Virtual Mathematics: the logic of difference brings together a range of new philosophical engagements with mathematics, using the work of French philosopher Gilles Deleuze as its focus. Deleuze’s engagements with mathematics rely upon the construction of alternative lineages in the history of mathematics in order to reconfigure particular philosophical problems and to develop new concepts. These alternative conceptual histories also challenge some of the self-imposed limits of the discipline of mathematics, and suggest the possibility of forging new connections (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)On What There is—Infinitesimals and the Nature of Numbers.Jens Erik Fenstad - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):57-79.
    This essay will be divided into three parts. In the first part, we discuss the case of infintesimals seen as a bridge between the discrete and the continuous. This leads in the second part to a discussion of the nature of numbers. In the last part, we follow up with some observations on the obvious applicability of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Platonism, Metaphor, and Mathematics.Glenn G. Parsons & James Robert Brown - 2004 - Dialogue 43 (1):47-.
    RésuméDans leur livre récent, George Lakoff et Rafael Núñez se livrent à une critique naturaliste soutenue du platonisme traditionnel concernant les entités mathématiques. Ils affirment que des résultats récents en sciences cognitives démontrent qu'il est faux. En particulier, ils estiment que la découverte que la cognition mathématique s'appuie pour une large part sur les métaphores conceptuelles est incompatible avec le platonisme. Nous montrons ici que tel n'est pas le cas. Nous examinons et rejetons également quelques arguments philosophiques que formulent Lakoff (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Domestication of Mathematical Pathologies.Jerzy Pogonowski - 2021 - Studies in Logic, Grammar and Rhetoric 66 (3):709-720.
    Certain mathematical objects bear the name “pathological”. They either occur as unexpected and unwilling in mathematical research practice, or are constructed deliberately, for instance in order to delimit the scope of application of a theorem. I discuss examples of mathematical pathologies and the circumstances of their emergence. I focus my attention on the creative role of pathologies in the development of mathematics. Finally, I propose a few reflections concerning the degree of cognitive accessibility of mathematical objects. I believe that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gender Issues in Corporate Leadership.Devora Shapiro & Marilea Bramer - 2013 - Handbook of the Philosophical Foundations of Business Ethics:1177-1189.
    Gender greatly impacts access to opportunities, potential, and success in corporate leadership roles. We begin with a general presentation of why such discussion is necessary for basic considerations of justice and fairness in gender equality and how the issues we raise must impact any ethical perspective on gender in the corporate workplace. We continue with a breakdown of the central categories affecting the success of women in corporate leadership roles. The first of these includes gender-influenced behavioral factors, such as the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dewey, democracy, and mathematics education: Reconceptualizing the last bastion of curricular certainty.Kurt Stemhagen & Jason W. Smith - 2008 - Education and Culture 24 (2):25-40.
    In this article we contend that attempts to foster democratic education in the United States' public schools rarely include mathematics class in meaningful ways. We begin with Dewey's conception of democracy and then argue that current ways of thinking about mathematics do not provide adequate foundations for democratic mathematics education. Our reconceptualization of mathematics draws on Dewey's uniquely humanistic philosophy of mathematics. We conclude with some implications of democratic mathematics education for school and society. Thus, this project seeks to blur (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rigour, Proof and Soundness.Oliver M. W. Tatton-Brown - 2020 - Dissertation, University of Bristol
    The initial motivating question for this thesis is what the standard of rigour in modern mathematics amounts to: what makes a proof rigorous, or fail to be rigorous? How is this judged? A new account of rigour is put forward, aiming to go some way to answering these questions. Some benefits of the norm of rigour on this account are discussed. The account is contrasted with other remarks that have been made about mathematical proof and its workings, and is tested (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How are Concepts of Infinity Acquired?Kazimierz Trzęsicki - 2015 - Studies in Logic, Grammar and Rhetoric 40 (1):179-217.
    Concepts of infinity have been subjects of dispute since antiquity. The main problems of this paper are: is the mind able to acquire a concept of infinity? and: how are concepts of infinity acquired? The aim of this paper is neither to say what the meanings of the word “infinity” are nor what infinity is and whether it exists. However, those questions will be mentioned, but only in necessary extent.
    Download  
     
    Export citation  
     
    Bookmark