Switch to: References

Add citations

You must login to add citations.
  1. Regularity and Hyperreal Credences.Kenny Easwaran - 2014 - Philosophical Review 123 (1):1-41.
    Many philosophers have become worried about the use of standard real numbers for the probability function that represents an agent's credences. They point out that real numbers can't capture the distinction between certain extremely unlikely events and genuinely impossible ones—they are both represented by credence 0, which violates a principle known as “regularity.” Following Skyrms 1980 and Lewis 1980, they recommend that we should instead use a much richer set of numbers, called the “hyperreals.” This essay argues that this popular (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Finite additivity, another lottery paradox and conditionalisation.Colin Howson - 2014 - Synthese 191 (5):1-24.
    In this paper I argue that de Finetti provided compelling reasons for rejecting countable additivity. It is ironical therefore that the main argument advanced by Bayesians against following his recommendation is based on the consistency criterion, coherence, he himself developed. I will show that this argument is mistaken. Nevertheless, there remain some counter-intuitive consequences of rejecting countable additivity, and one in particular has all the appearances of a full-blown paradox. I will end by arguing that in fact it is no (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)Symmetry arguments against regular probability: A reply to recent objections.Matthew W. Parker - 2018 - European Journal for Philosophy of Science 9 (1):8.
    A probability distribution is regular if no possible event is assigned probability zero. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson (2017) and Benci et al. (2016) have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s (2007) “isomorphic” events are not in fact isomorphic, but Howson is speaking (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Symmetry arguments against regular probability: A reply to recent objections.Matthew W. Parker - 2019 - European Journal for Philosophy of Science 9 (1):1-21.
    A probability distribution is regular if it does not assign probability zero to any possible event. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson and Benci et al. have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s “isomorphic” events are not in fact isomorphic, but Howson is speaking (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Infinite Lotteries, Spinners, Applicability of Hyperreals†.Emanuele Bottazzi & Mikhail G. Katz - 2021 - Philosophia Mathematica 29 (1):88-109.
    We analyze recent criticisms of the use of hyperreal probabilities as expressed by Pruss, Easwaran, Parker, and Williamson. We show that the alleged arbitrariness of hyperreal fields can be avoided by working in the Kanovei–Shelah model or in saturated models. We argue that some of the objections to hyperreal probabilities arise from hidden biases that favor Archimedean models. We discuss the advantage of the hyperreals over transferless fields with infinitesimals. In Paper II we analyze two underdetermination theorems by Pruss and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Underdetermination of infinitesimal probabilities.Alexander R. Pruss - 2018 - Synthese 198 (1):777-799.
    A number of philosophers have attempted to solve the problem of null-probability possible events in Bayesian epistemology by proposing that there are infinitesimal probabilities. Hájek and Easwaran have argued that because there is no way to specify a particular hyperreal extension of the real numbers, solutions to the regularity problem involving infinitesimals, or at least hyperreal infinitesimals, involve an unsatisfactory ineffability or arbitrariness. The arguments depend on the alleged impossibility of picking out a particular hyperreal extension of the real numbers (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Popper Functions, Uniform Distributions and Infinite Sequences of Heads.Alexander R. Pruss - 2015 - Journal of Philosophical Logic 44 (3):259-271.
    Popper functions allow one to take conditional probabilities as primitive instead of deriving them from unconditional probabilities via the ratio formula P=P/P. A major advantage of this approach is it allows one to condition on events of zero probability. I will show that under plausible symmetry conditions, Popper functions often fail to do what they were supposed to do. For instance, suppose we want to define the Popper function for an isometrically invariant case in two dimensions and hence require the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Cardinality Arguments Against Regular Probability Measures.Thomas Hofweber - 2014 - Thought: A Journal of Philosophy 3 (2):166-175.
    Cardinality arguments against regular probability measures aim to show that no matter which ordered field ℍ we select as the measures for probability, we can find some event space F of sufficiently large cardinality such that there can be no regular probability measure from F into ℍ. In particular, taking ℍ to be hyperreal numbers won't help to guarantee that probability measures can always be regular. I argue that such cardinality arguments fail, since they rely on the wrong conception of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Regular probability comparisons imply the Banach–Tarski Paradox.Alexander R. Pruss - 2014 - Synthese 191 (15):3525-3540.
    Consider the regularity thesis that each possible event has non-zero probability. Hájek challenges this in two ways: there can be nonmeasurable events that have no probability at all and on a large enough sample space, some probabilities will have to be zero. But arguments for the existence of nonmeasurable events depend on the axiom of choice. We shall show that the existence of anything like regular probabilities is by itself enough to imply a weak version of AC sufficient to prove (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Repelling a Prussian charge with a solution to a paradox of Dubins.Colin Howson - 2016 - Synthese 195 (1).
    Pruss uses an example of Lester Dubins to argue against the claim that appealing to hyperreal-valued probabilities saves probabilistic regularity from the objection that in continuum outcome-spaces and with standard probability functions all save countably many possibilities must be assigned probability 0. Dubins’s example seems to show that merely finitely additive standard probability functions allow reasoning to a foregone conclusion, and Pruss argues that hyperreal-valued probability functions are vulnerable to the same charge. However, Pruss’s argument relies on the rule of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Thomas Hobbes and Thomas White on Identity and Discontinuous Existence.Han Thomas Adriaenssen & Sam Alma - 2021 - Pacific Philosophical Quarterly 102 (3):429-454.
    Is it possible for an individual that has gone out of being to come back into being again? The English Aristotelian, Thomas White, argued that it is not. Thomas Hobbes disagreed, and used the case of the Ship of Theseus to argue that individuals that have gone out of being may come back into being again. This paper provides the first systematic account of their arguments. It is doubtful that Hobbes has a consistent case against White. Still his criticism may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Weintraub’s response to Williamson’s coin flip argument.Matthew W. Parker - 2021 - European Journal for Philosophy of Science 11 (3):1-21.
    A probability distribution is regular if it does not assign probability zero to any possible event. Williamson argued that we should not require probabilities to be regular, for if we do, certain “isomorphic” physical events must have different probabilities, which is implausible. His remarks suggest an assumption that chances are determined by intrinsic, qualitative circumstances. Weintraub responds that Williamson’s coin flip events differ in their inclusion relations to each other, or the inclusion relations between their times, and this can account (...)
    Download  
     
    Export citation  
     
    Bookmark