Switch to: References

Add citations

You must login to add citations.
  1. On Radical Enactivist Accounts of Arithmetical Cognition.Markus Pantsar - 2022 - Ergo: An Open Access Journal of Philosophy 9.
    Hutto and Myin have proposed an account of radically enactive (or embodied) cognition (REC) as an explanation of cognitive phenomena, one that does not include mental representations or mental content in basic minds. Recently, Zahidi and Myin have presented an account of arithmetical cognition that is consistent with the REC view. In this paper, I first evaluate the feasibility of that account by focusing on the evolutionarily developed proto-arithmetical abilities and whether empirical data on them support the radical enactivist view. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Developing Artificial Human-Like Arithmetical Intelligence (and Why).Markus Pantsar - 2023 - Minds and Machines 33 (3):379-396.
    Why would we want to develop artificial human-like arithmetical intelligence, when computers already outperform humans in arithmetical calculations? Aside from arithmetic consisting of much more than mere calculations, one suggested reason is that AI research can help us explain the development of human arithmetical cognition. Here I argue that this question needs to be studied already in the context of basic, non-symbolic, numerical cognition. Analyzing recent machine learning research on artificial neural networks, I show how AI studies could potentially shed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • From Maximal Intersubjectivity to Objectivity: An Argument from the Development of Arithmetical Cognition.Markus Pantsar - 2022 - Topoi 42 (1):271-281.
    One main challenge of non-platonist philosophy of mathematics is to account for the apparent objectivity of mathematical knowledge. Cole and Feferman have proposed accounts that aim to explain objectivity through the intersubjectivity of mathematical knowledge. In this paper, focusing on arithmetic, I will argue that these accounts as such cannot explain the apparent objectivity of mathematical knowledge. However, with support from recent progress in the empirical study of the development of arithmetical cognition, a stronger argument can be provided. I will (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On What Ground Do Thin Objects Exist? In Search of the Cognitive Foundation of Number Concepts.Markus Pantsar - 2023 - Theoria 89 (3):298-313.
    Linnebo in 2018 argues that abstract objects like numbers are “thin” because they are only required to be referents of singular terms in abstraction principles, such as Hume's principle. As the specification of existence claims made by analytic truths (the abstraction principles), their existence does not make any substantial demands of the world; however, as Linnebo notes, there is a potential counter-argument concerning infinite regress against introducing objects this way. Against this, he argues that vicious regress is avoided in the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the development of geometric cognition: Beyond nature vs. nurture.Markus Pantsar - 2022 - Philosophical Psychology 35 (4):595-616.
    How is knowledge of geometry developed and acquired? This central question in the philosophy of mathematics has received very different answers. Spelke and colleagues argue for a “core cognitivist”, nativist, view according to which geometric cognition is in an important way shaped by genetically determined abilities for shape recognition and orientation. Against the nativist position, Ferreirós and García-Pérez have argued for a “culturalist” account that takes geometric cognition to be fundamentally a culturally developed phenomenon. In this paper, I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An empirically informed account of numbers as reifications.César Frederico dos Santos - 2023 - Theoria 89 (6):783-799.
    The field of numerical cognition provides a fairly clear picture of the processes through which we learn basic arithmetical facts. This scientific picture, however, is rarely taken as providing a response to a much‐debated philosophical question, namely, the question of how we obtain number knowledge, since numbers are usually thought to be abstract entities located outside of space and time. In this paper, I take the scientific evidence on how we learn arithmetic as providing a response to the philosophical question (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why do numbers exist? A psychologist constructivist account.Markus Pantsar - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    In this paper, I study the kind of questions we can ask about the existence of numbers. In addition to asking whether numbers exist, and how, I argue that there is also a third relevant question: why numbers exist. In platonist and nominalist accounts this question may not make sense, but in the psychologist account I develop, it is as well-placed as the other two questions. In fact, there are two such why-questions: the causal why-question asks what causes numbers to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • No Magic: From Phenomenology of Practice to Social Ontology of Mathematics.Mirja Hartimo & Jenni Rytilä - 2023 - Topoi 42 (1):283-295.
    The paper shows how to use the Husserlian phenomenological method in contemporary philosophical approaches to mathematical practice and mathematical ontology. First, the paper develops the phenomenological approach based on Husserl's writings to obtain a method for understanding mathematical practice. Then, to put forward a full-fledged ontology of mathematics, the phenomenological approach is complemented with social ontological considerations. The proposed ontological account sees mathematical objects as social constructions in the sense that they are products of culturally shared and historically developed practices. (...)
    Download  
     
    Export citation  
     
    Bookmark