Switch to: References

Add citations

You must login to add citations.
  1. Kant’s Mereological Account of Greater and Lesser Actual Infinities.Daniel Smyth - 2023 - Archiv für Geschichte der Philosophie 105 (2):315-348.
    Recent work on Kant’s conception of space has largely put to rest the view that Kant is hostile to actual infinity. Far from limiting our cognition to quantities that are finite or merely potentially infinite, Kant characterizes the ground of all spatial representation as an actually infinite magnitude. I advance this reevaluation a step further by arguing that Kant judges some actual infinities to be greater than others: he claims, for instance, that an infinity of miles is strictly smaller than (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How can a line segment with extension be composed of extensionless points?Brian Reese, Michael Vazquez & Scott Weinstein - 2022 - Synthese 200 (2):1-28.
    We provide a new interpretation of Zeno’s Paradox of Measure that begins by giving a substantive account, drawn from Aristotle’s text, of the fact that points lack magnitude. The main elements of this account are (1) the Axiom of Archimedes which states that there are no infinitesimal magnitudes, and (2) the principle that all assignments of magnitude, or lack thereof, must be grounded in the magnitude of line segments, the primary objects to which the notion of linear magnitude applies. Armed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Avicenna on Mathematical Infinity.Mohammad Saleh Zarepour - 2020 - Archiv für Geschichte der Philosophie 102 (3):379-425.
    Avicenna believed in mathematical finitism. He argued that magnitudes and sets of ordered numbers and numbered things cannot be actually infinite. In this paper, I discuss his arguments against the actuality of mathematical infinity. A careful analysis of the subtleties of his main argument, i. e., The Mapping Argument, shows that, by employing the notion of correspondence as a tool for comparing the sizes of mathematical infinities, he arrived at a very deep and insightful understanding of the notion of mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Aristotle on Potential Density.D. A. Anapolitanos & D. Christopoulou - 2021 - Axiomathes 31 (1):1-14.
    In this paper we attempt to clear out the ground concerning the Aristotelian notion of density. Aristotle himself appears to confuse mathematical density with that of mathematical continuity. In order to enlighten the situation we discuss the Aristotelian notions of infinity and continuity. At the beginning, we deal with Aristotle’s views on the infinite with respect to addition as well as to division. In the sequel, we focus our attention to points and discuss their status with respect to the actuality–potentiality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • This.Phil Corkum - 2019 - Ancient Philosophy Today 1 (1):38-63.
    The expression tode ti, commonly translated as ‘a this’, plays a key role in Aristotle’s metaphysics. Drawing lightly on theories of demonstratives in contemporary linguistics, I discuss the expres...
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Actual and Potential Infinity.Øystein Linnebo & Stewart Shapiro - 2017 - Noûs 53 (1):160-191.
    The notion of potential infinity dominated in mathematical thinking about infinity from Aristotle until Cantor. The coherence and philosophical importance of the notion are defended. Particular attention is paid to the question of whether potential infinity is compatible with classical logic or requires a weaker logic, perhaps intuitionistic.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Aristotelian finitism.Tamer Nawar - 2015 - Synthese 192 (8):2345-2360.
    It is widely known that Aristotle rules out the existence of actual infinities but allows for potential infinities. However, precisely why Aristotle should deny the existence of actual infinities remains somewhat obscure and has received relatively little attention in the secondary literature. In this paper I investigate the motivations of Aristotle’s finitism and offer a careful examination of some of the arguments considered by Aristotle both in favour of and against the existence of actual infinities. I argue that Aristotle has (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Aristotle and the Potential Infinite: An Intuitionistic Approach.Kyle Takaki - 2009 - Apeiron 42 (4):309-324.
    Download  
     
    Export citation  
     
    Bookmark  
  • Aristotelian Infinity.John Bowin - 2007 - Oxford Studies in Ancient Philosophy 32:233-250.
    Bowin begins with an apparent paradox about Aristotelian infinity: Aristotle clearly says that infinity exists only potentially and not actually. However, Aristotle appears to say two different things about the nature of that potential existence. On the one hand, he seems to say that the potentiality is like that of a process that might occur but isn't right now. Aristotle uses the Olympics as an example: they might be occurring, but they aren't just now. On the other hand, Aristotle says (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Partial realizations of Hilbert's program.Stephen G. Simpson - 1988 - Journal of Symbolic Logic 53 (2):349-363.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Proper classes.Penelope Maddy - 1983 - Journal of Symbolic Logic 48 (1):113-139.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Competing Roles of Aristotle's Account of the Infinite.Robby Finley - 2024 - Apeiron 57 (1):25-54.
    There are two distinct but interrelated questions concerning Aristotle’s account of infinity that have been the subject of recurring debate. The first of these, what I call here the interpretative question, asks for a charitable and internally coherent interpretation of the limited pieces of text where Aristotle outlines his view of the ‘potential’ (and not ‘actual’) infinite. The second, what I call here the philosophical question, asks whether there is a way to make Aristotle’s notion of the potential infinite coherent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Digital Ocean.Sarah Pourciau - 2022 - Critical Inquiry 48 (2):233-261.
    The article investigates the mathematical and philosophical backdrop of the digital ocean as contemporary model, moving from the digitalized ocean of Georg Cantor’s set theory to that of Alan Turing’s computation theory. It examines in Cantor what is arguably the most rigorous historical attempt to think the structural essence of the continuum, in order to clarify what disappears from the computational paradigm once Turing begins to advocate for the structural irrelevance of this ancient ground.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Labyrinth of Continua.Patrick Reeder - 2018 - Philosophia Mathematica 26 (1):1-39.
    This is a survey of the concept of continuity. Efforts to explicate continuity have produced a plurality of philosophical conceptions of continuity that have provably distinct expressions within contemporary mathematics. I claim that there is a divide between the conceptions that treat the whole continuum as prior to its parts, and those conceptions that treat the parts of the continuum as prior to the whole. Along this divide, a tension emerges between those conceptions that favor philosophical idealizations of continuity and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Aristotle on the subject matter of geometry.Richard Pettigrew - 2009 - Phronesis 54 (3):239-260.
    I offer a new interpretation of Aristotle's philosophy of geometry, which he presents in greatest detail in Metaphysics M 3. On my interpretation, Aristotle holds that the points, lines, planes, and solids of geometry belong to the sensible realm, but not in a straightforward way. Rather, by considering Aristotle's second attempt to solve Zeno's Runner Paradox in Book VIII of the Physics , I explain how such objects exist in the sensibles in a special way. I conclude by considering the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Atomism and Infinite Divisibility.Ralph Edward Kenyon - 1994 - Dissertation, University of Massachusetts Amherst
    This work analyzes two perspectives, Atomism and Infinite Divisibility, in the light of modern mathematical knowledge and recent developments in computer graphics. A developmental perspective is taken which relates ideas leading to atomism and infinite divisibility. A detailed analysis of and a new resolution for Zeno's paradoxes are presented. Aristotle's arguments are analyzed. The arguments of some other philosophers are also presented and discussed. All arguments purporting to prove one position over the other are shown to be faulty, mostly by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kontinuität und Mechanismus. [REVIEW]Richard Arthur, Christia Mercer, Justin Smith & Catherine Wilson - 1997 - The Leibniz Review 7:25-64.
    Download  
     
    Export citation  
     
    Bookmark  
  • Potentiality and Actuality of the Infinite: A Misunderstood Passage in Aristotle’s Metaphysics (Θ.6, 1048b14-17).Hermann Weidemann - 2017 - Phronesis 62 (2):210-225.
    InMetaphysicsΘ.6, 1048b14-17, Aristotle treats the problem of what it is for the infinite to exist potentially, i.e. to be potentially actual. According to my interpretation, Aristotle argues that to exist potentially is for the infinite to have a potentiality which cannot be actualized in reality but only in thought, because it is a potentiality the process of whose actualization cannot be brought to an end.
    Download  
     
    Export citation  
     
    Bookmark  
  • Natural Density and the Quantifier “Most”.Selçuk Topal & Ahmet Çevik - 2020 - Journal of Logic, Language and Information 29 (4):511-523.
    This paper proposes a formalization of the class of sentences quantified by most, which is also interpreted as proportion of or majority of depending on the domain of discourse. We consider sentences of the form “Most A are B”, where A and B are plural nouns and the interpretations of A and B are infinite subsets of \. There are two widely used semantics for Most A are B: \ > C \) and \ > \dfrac{C}{2} \), where C denotes (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Predicativism as a Form of Potentialism.Øystein Linnebo & Stewart Shapiro - 2023 - Review of Symbolic Logic 16 (1):1-32.
    In the literature, predicativism is connected not only with the Vicious Circle Principle but also with the idea that certain totalities are inherently potential. To explain the connection between these two aspects of predicativism, we explore some approaches to predicativity within the modal framework for potentiality developed in Linnebo (2013) and Linnebo and Shapiro (2019). This puts predicativism into a more general framework and helps to sharpen some of its key theses.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Aristotelian Continua.Øystein Linnebo, Stewart Shapiro & Geoffrey Hellman - 2016 - Philosophia Mathematica 24 (2):214-246.
    In previous work, Hellman and Shapiro present a regions-based account of a one-dimensional continuum. This paper produces a more Aristotelian theory, eschewing the existence of points and the use of infinite sets or pluralities. We first show how to modify the original theory. There are a number of theorems that have to be added as axioms. Building on some work by Linnebo, we then show how to take the ‘potential’ nature of the usual operations seriously, by using a modal language, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Infinite Regress Arguments as per impossibile Arguments in Aristotle: De Caelo 300a30–b1, Posterior Analytics 72b5–10, Physics V.2 225b33–226a10. [REVIEW]Matthew Duncombe - 2022 - Rhizomata 10 (2):262-282.
    Infinite regress arguments are a powerful tool in Aristotle, but this style of argument has received relatively little attention. Improving our understanding of infinite regress arguments has become pressing since recent scholars have pointed out that it is not clear whether Aristotle’s infinite regress arguments are, in general, effective or indeed what the logical structure of these arguments is. One obvious approach would be to hold that Aristotle takes infinite regress arguments to be per impossibile arguments, which derive an infinite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • With and without end.Peter Cave - 2007 - Philosophical Investigations 30 (2):105–126.
    Ways and words about infinity have frequently hidden a continuing paradox inspired by Zeno. The basic puzzle is the tortoise's – Mr T's – Extension Challenge, the challenge being how any extension, be it in time or space or both, moving or still, can yet be of an endless number of extensions. We identify a similarity with Mr T's Deduction Challenge, reported by Lewis Carroll, to the claim that a conclusion can be validly reached in finite steps. Rejecting common solutions (...)
    Download  
     
    Export citation  
     
    Bookmark