Switch to: References

Citations of:

Numbers can be just what they have to

Noûs 27 (4):487-498 (1993)

Add citations

You must login to add citations.
  1. The structuralist approach to underdetermination.Chanwoo Lee - 2022 - Synthese 200 (2):1-25.
    This paper provides an exposition of the structuralist approach to underdetermination, which aims to resolve the underdetermination of theories by identifying their common theoretical structure. Applications of the structuralist approach can be found in many areas of philosophy. I present a schema of the structuralist approach, which conceptually unifies such applications in different subject matters. It is argued that two classic arguments in the literature, Paul Benacerraf’s argument on natural numbers and W. V. O. Quine’s argument for the indeterminacy of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Homotopy Type Theory and Structuralism.Teruji Thomas - 2014 - Dissertation, University of Oxford
    I explore the possibility of a structuralist interpretation of homotopy type theory (HoTT) as a foundation for mathematics. There are two main aspects to HoTT's structuralist credentials. First, it builds on categorical set theory (CST), of which the best-known variant is Lawvere's ETCS. I argue that CST has merit as a structuralist foundation, in that it ascribes only structural properties to typical mathematical objects. However, I also argue that this success depends on the adoption of a strict typing system which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Structuralism in Social Science: Obsolete or Promising?Josef Menšík - 2018 - Teorie Vědy / Theory of Science 40 (2):129-132.
    The approach of structuralism came to philosophy from social science. It was also in social science where, in 1950–1970s, in the form of the French structuralism, the approach gained its widest recognition. Since then, however, the approach fell out of favour in social science. Recently, structuralism is gaining currency in the philosophy of mathematics. After ascertaining that the two structuralisms indeed share a common core, the question stands whether general structuralism could not find its way back into social science. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Set Theory and Structures.Neil Barton & Sy-David Friedman - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 223-253.
    Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully interrelates a `structural' perspective (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Univalent foundations as structuralist foundations.Dimitris Tsementzis - 2017 - Synthese 194 (9):3583-3617.
    The Univalent Foundations of Mathematics provide not only an entirely non-Cantorian conception of the basic objects of mathematics but also a novel account of how foundations ought to relate to mathematical practice. In this paper, I intend to answer the question: In what way is UF a new foundation of mathematics? I will begin by connecting UF to a pragmatist reading of the structuralist thesis in the philosophy of mathematics, which I will use to define a criterion that a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Louis Joly as a Platonist Painter?Roger Pouivet - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 337--341.
    Download  
     
    Export citation  
     
    Bookmark  
  • Foundations as truths which organize mathematics.Colin Mclarty - 2013 - Review of Symbolic Logic 6 (1):76-86.
    The article looks briefly at Fefermans own foundations. Among many different senses of foundations, the one that mathematics needs in practice is a recognized body of truths adequate to organize definitions and proofs. Finding concise principles of this kind has been a huge achievement by mathematicians and logicians. We put ZFC and categorical foundations both into this context.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Intuition, Objectivity and Structure.Elaine Landry - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 133--153.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On three arguments against categorical structuralism.Makmiller Pedroso - 2009 - Synthese 170 (1):21 - 31.
    Some mathematicians and philosophers contend that set theory plays a foundational role in mathematics. However, the development of category theory during the second half of the twentieth century has encouraged the view that this theory can provide a structuralist alternative to set-theoretical foundations. Against this tendency, criticisms have been made that category theory depends on set-theoretical notions and, because of this, category theory fails to show that set-theoretical foundations are dispensable. The goal of this paper is to show that these (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Multiple reductions revisited.Justin Clarke-Doane - 2008 - Philosophia Mathematica 16 (2):244-255.
    Paul Benacerraf's argument from multiple reductions consists of a general argument against realism about the natural numbers (the view that numbers are objects), and a limited argument against reductionism about them (the view that numbers are identical with prima facie distinct entities). There is a widely recognized and severe difficulty with the former argument, but no comparably recognized such difficulty with the latter. Even so, reductionism in mathematics continues to thrive. In this paper I develop a difficulty for Benacerraf's argument (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Structuralism without structures.Hellman Geoffrey - 1996 - Philosophia Mathematica 4 (2):100-123.
    Recent technical developments in the logic of nominalism make it possible to improve and extend significantly the approach to mathematics developed in Mathematics without Numbers. After reviewing the intuitive ideas behind structuralism in general, the modal-structuralist approach as potentially class-free is contrasted broadly with other leading approaches. The machinery of nominalistic ordered pairing (Burgess-Hazen-Lewis) and plural quantification (Boolos) can then be utilized to extend the core systems of modal-structural arithmetic and analysis respectively to full, classical, polyadic third- and fourthorder number (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Structuralism as a philosophy of mathematical practice.Jessica Carter - 2008 - Synthese 163 (2):119 - 131.
    This paper compares the statement ‘Mathematics is the study of structure’ with the actual practice of mathematics. We present two examples from contemporary mathematical practice where the notion of structure plays different roles. In the first case a structure is defined over a certain set. It is argued firstly that this set may not be regarded as a structure and secondly that what is important to mathematical practice is the relation that exists between the structure and the set. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (2 other versions)Philosophy of mathematics.Jeremy Avigad - manuscript
    The philosophy of mathematics plays an important role in analytic philosophy, both as a subject of inquiry in its own right, and as an important landmark in the broader philosophical landscape. Mathematical knowledge has long been regarded as a paradigm of human knowledge with truths that are both necessary and certain, so giving an account of mathematical knowledge is an important part of epistemology. Mathematical objects like numbers and sets are archetypical examples of abstracta, since we treat such objects in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Individuation of objects – a problem for structuralism?Jessica Carter - 2005 - Synthese 143 (3):291 - 307.
    . This paper identifies two aspects of the structuralist position of S. Shapiro which are in conflict with the actual practice of mathematics. The first problem follows from Shapiros identification of isomorphic structures. Here I consider the so called K-group, as defined by A. Grothendieck in algebraic geometry, and a group which is isomorphic to the K-group, and I argue that these are not equal. The second problem concerns Shapiros claim that it is not possible to identify objects in a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Logicism, structuralism and objectivity.Elaine Landry - 2001 - Topoi 20 (1):79-95.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Breaking the Tie: Benacerraf’s Identification Argument Revisited.Arnon Avron & Balthasar Grabmayr - 2023 - Philosophia Mathematica 31 (1):81-103.
    Most philosophers take Benacerraf’s argument in ‘What numbers could not be’ to rebut successfully the reductionist view that numbers are sets. This philosophical consensus jars with mathematical practice, in which reductionism continues to thrive. In this note, we develop a new challenge to Benacerraf’s argument by contesting a central premise which is almost unanimously accepted in the literature. Namely, we argue that — contra orthodoxy — there are metaphysically relevant reasons to prefer von Neumann ordinals over other set-theoretic reductions of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today.Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.) - 2006 - Dordrecht, Netherland: Springer.
    This book explores the interplay between logic and science, describing new trends, new issues and potential research developments.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structures and structuralism in contemporary philosophy of mathematics.Erich H. Reck & Michael P. Price - 2000 - Synthese 125 (3):341-383.
    In recent philosophy of mathematics avariety of writers have presented ``structuralist''views and arguments. There are, however, a number ofsubstantive differences in what their proponents take``structuralism'' to be. In this paper we make explicitthese differences, as well as some underlyingsimilarities and common roots. We thus identifysystematically and in detail, several main variants ofstructuralism, including some not often recognized assuch. As a result the relations between thesevariants, and between the respective problems theyface, become manifest. Throughout our focus is onsemantic and metaphysical issues, (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Soft Axiomatisation: John von Neumann on Method and von Neumann's Method in the Physical Sciences.Miklós Rédei & Michael Stöltzner - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 235--249.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Category theory.Jean-Pierre Marquis - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Structuralism and Meta-Mathematics.Simon Friederich - 2010 - Erkenntnis 73 (1):67 - 81.
    The debate on structuralism in the philosophy of mathematics has brought into focus a question about the status of meta-mathematics. It has been raised by Shapiro (2005), where he compares the ongoing discussion on structuralism in category theory to the Frege-Hilbert controversy on axiomatic systems. Shapiro outlines an answer according to which meta-mathematics is understood in structural terms and one according to which it is not. He finds both options viable and does not seem to prefer one over the other. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What is categorical structuralism?Geoffrey Hellman - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 151--161.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Comparing material and structural set theories.Michael Shulman - 2019 - Annals of Pure and Applied Logic 170 (4):465-504.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What is a Higher Level Set?Dimitris Tsementzis - 2016 - Philosophia Mathematica:nkw032.
    Structuralist foundations of mathematics aim for an ‘invariant’ conception of mathematics. But what should be their basic objects? Two leading answers emerge: higher groupoids or higher categories. I argue in favor of the former over the latter. First, I explain why to choose between them we need to ask the question of what is the correct ‘categorified’ version of a set. Second, I argue in favor of groupoids over categories as ‘categorified’ sets by introducing a pre-formal understanding of groupoids as (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Scientific phenomena and patterns in data.Pascal Ströing - 2018 - Dissertation, Lmu München
    Download  
     
    Export citation  
     
    Bookmark  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation