Switch to: References

Add citations

You must login to add citations.
  1. Prolegomenon To Any Future Neo‐Logicist Set Theory: Abstraction And Indefinite Extensibility.Stewart Shapiro - 2003 - British Journal for the Philosophy of Science 54 (1):59-91.
    The purpose of this paper is to assess the prospects for a neo‐logicist development of set theory based on a restriction of Frege's Basic Law V, which we call (RV): ∀P∀Q[Ext(P) = Ext(Q) ≡ [(BAD(P) & BAD(Q)) ∨ ∀x(Px ≡ Qx)]] BAD is taken as a primitive property of properties. We explore the features it must have for (RV) to sanction the various strong axioms of Zermelo–Fraenkel set theory. The primary interpretation is where ‘BAD’ is Dummett's ‘indefinitely extensible’.1 Background: what (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Frege Meets Zermelo: A Perspective on Ineffability and Reflection.Stewart Shapiro - 2008 - Review of Symbolic Logic 1 (2):241-266.
    1. Philosophical background: iteration, ineffability, reflection. There are at least two heuristic motivations for the axioms of standard set theory, by which we mean, as usual, first-order Zermelo–Fraenkel set theory with the axiom of choice (ZFC): the iterative conception and limitation of size (see Boolos, 1989). Each strand provides a rather hospitable environment for the hypothesis that the set-theoretic universe is ineffable, which is our target in this paper, although the motivation is different in each case.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • We hold these truths to be self-evident: But what do we mean by that?: We hold these truths to be self-evident.Stewart Shapiro - 2009 - Review of Symbolic Logic 2 (1):175-207.
    At the beginning of Die Grundlagen der Arithmetik [1884], Frege observes that “it is in the nature of mathematics to prefer proof, where proof is possible”. This, of course, is true, but thinkers differ on why it is that mathematicians prefer proof. And what of propositions for which no proof is possible? What of axioms? This talk explores various notions of self-evidence, and the role they play in various foundational systems, notably those of Frege and Zermelo. I argue that both (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Russell’s method of analysis and the axioms of mathematics.Lydia Patton - 2017 - In Sandra Lapointe & Christopher Pincock (eds.), Innovations in the History of Analytical Philosophy. London, United Kingdom: Palgrave-Macmillan. pp. 105-126.
    In the early 1900s, Russell began to recognize that he, and many other mathematicians, had been using assertions like the Axiom of Choice implicitly, and without explicitly proving them. In working with the Axioms of Choice, Infinity, and Reducibility, and his and Whitehead’s Multiplicative Axiom, Russell came to take the position that some axioms are necessary to recovering certain results of mathematics, but may not be proven to be true absolutely. The essay traces historical roots of, and motivations for, Russell’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • No decreasing sequence of cardinals.Paul Howard & Eleftherios Tachtsis - 2016 - Archive for Mathematical Logic 55 (3-4):415-429.
    In set theory without the Axiom of Choice, we investigate the set-theoretic strength of the principle NDS which states that there is no function f on the set ω of natural numbers such that for everyn ∈ ω, f ≺ f, where for sets x and y, x ≺ y means that there is a one-to-one map g : x → y, but no one-to-one map h : y → x. It is a long standing open problem whether NDS implies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Role of Axioms in Mathematics.Kenny Easwaran - 2008 - Erkenntnis 68 (3):381-391.
    To answer the question of whether mathematics needs new axioms, it seems necessary to say what role axioms actually play in mathematics. A first guess is that they are inherently obvious statements that are used to guarantee the truth of theorems proved from them. However, this may neither be possible nor necessary, and it doesn’t seem to fit the historical facts. Instead, I argue that the role of axioms is to systematize uncontroversial facts that mathematicians can accept from a wide (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Is Intuition Based On Understanding?[I thank Jo].Elijah Chudnoff - 2013 - Philosophy and Phenomenological Research 86 (1):42-67.
    According to the most popular non-skeptical views about intuition, intuitions justify beliefs because they are based on understanding. More precisely: if intuiting that p justifies you in believing that p it does so because your intuition is based on your understanding of the proposition that p. The aim of this paper is to raise some challenges for accounts of intuitive justification along these lines. I pursue this project from a non-skeptical perspective. I argue that there are cases in which intuiting (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Regularity and Hyperreal Credences.Kenny Easwaran - 2014 - Philosophical Review 123 (1):1-41.
    Many philosophers have become worried about the use of standard real numbers for the probability function that represents an agent's credences. They point out that real numbers can't capture the distinction between certain extremely unlikely events and genuinely impossible ones—they are both represented by credence 0, which violates a principle known as “regularity.” Following Skyrms 1980 and Lewis 1980, they recommend that we should instead use a much richer set of numbers, called the “hyperreals.” This essay argues that this popular (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • (1 other version)Cantor, Choice, and Paradox.Nicholas DiBella - 2024 - Philosophical Review 133 (3):223-263.
    This article proposes a revision of Cantor’s account of set size that understands comparisons of set size fundamentally in terms of surjections rather than injections. This revised account is equivalent to Cantor’s account if the axiom of choice is true, but its consequences differ from those of Cantor’s if the axiom of choice is false. This article argues that the revised account is an intuitive generalization of Cantor’s account, blocks paradoxes—most notably, that a set can be partitioned into a set (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A dedekind finite borel set.Arnold W. Miller - 2011 - Archive for Mathematical Logic 50 (1-2):1-17.
    In this paper we prove three theorems about the theory of Borel sets in models of ZF without any form of the axiom of choice. We prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\subseteq 2^\omega}$$\end{document} is a Gδσ-set then either B is countable or B contains a perfect subset. Second, we prove that if 2ω is the countable union of countable sets, then there exists an Fσδ set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Traditional logic and the early history of sets, 1854-1908.José Ferreirós - 1996 - Archive for History of Exact Sciences 50 (1):5-71.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Logic, ontology, mathematical practice.Stewart Shapiro - 1989 - Synthese 79 (1):13 - 50.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Unifying foundations – to be seen in the phenomenon of language.Lars Löfgren - 2004 - Foundations of Science 9 (2):135-189.
    Scientific knowledge develops in an increasingly fragmentary way.A multitude of scientific disciplines branch out. Curiosity for thisdevelopment leads into quests for a unifying understanding. To a certain extent, foundational studies provide such unification. There is a tendency, however, also of a fragmentary growth of foundational studies, like in a multitude of disciplinaryfoundations. We suggest to look at the foundational problem, not primarily as a search for foundations for one discipline in another, as in some reductionist approach, but as a steady (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • True Turing: A Bird’s-Eye View.Edgar Daylight - 2024 - Minds and Machines 34 (1):29-49.
    Alan Turing is often portrayed as a materialist in secondary literature. In the present article, I suggest that Turing was instead an idealist, inspired by Cambridge scholars, Arthur Eddington, Ernest Hobson, James Jeans and John McTaggart. I outline Turing’s developing thoughts and his legacy in the USA to date. Specifically, I contrast Turing’s two notions of computability (both from 1936) and distinguish between Turing’s “machine intelligence” in the UK and the more well-known “artificial intelligence” in the USA. According to my (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The concept of “character” in Dirichlet’s theorem on primes in an arithmetic progression.Jeremy Avigad & Rebecca Morris - 2014 - Archive for History of Exact Sciences 68 (3):265-326.
    In 1837, Dirichlet proved that there are infinitely many primes in any arithmetic progression in which the terms do not all share a common factor. We survey implicit and explicit uses ofDirichlet characters in presentations of Dirichlet’s proof in the nineteenth and early twentieth centuries, with an eye toward understanding some of the pragmatic pressures that shaped the evolution of modern mathematical method.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Completeness and categoricity: Frege, gödel and model theory.Stephen Read - 1997 - History and Philosophy of Logic 18 (2):79-93.
    Frege’s project has been characterized as an attempt to formulate a complete system of logic adequate to characterize mathematical theories such as arithmetic and set theory. As such, it was seen to fail by Gödel’s incompleteness theorem of 1931. It is argued, however, that this is to impose a later interpretation on the word ‘complete’ it is clear from Dedekind’s writings that at least as good as interpretation of completeness is categoricity. Whereas few interesting first-order mathematical theories are categorical or (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Zermelo: definiteness and the universe of definable sets.Heinz-Dieter Ebbinghaus - 2003 - History and Philosophy of Logic 24 (3):197-219.
    Using hitherto unpublished manuscripts from the Zermelo Nachlass, I describe the development of the notion of definiteness and the discussion about it, giving a conclusive picture of Zermelo's thoughts up to the late thirties. As it turns out, Zermelo's considerations about definiteness are intimately related to his concept of a Cantorian universe of categorically definable sets that may be considered an inner model of set theory in an ideationally given universe of classes.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The nature and role of intuition in mathematical epistemology.Paul Thompson - 1998 - Philosophia 26 (3-4):279-319.
    Great intuitions are fundamental to conjecture and discovery in mathematics. In this paper, we investigate the role that intuition plays in mathematical thinking. We review key events in the history of mathematics where paradoxes have emerged from mathematicians' most intuitive concepts and convictions, and where the resulting difficulties led to heated controversies and debates. Examples are drawn from Riemannian geometry, set theory and the analytic theory of the continuum, and include the Continuum Hypothesis, the Tarski-Banach Paradox, and several works by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • David Hilbert and the axiomatization of physics (1894–1905).Leo Corry - 1997 - Archive for History of Exact Sciences 51 (2):83-198.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • When series go in indefinitum, ad infinitum and in infinitum concepts of infinity in Kant’s antinomy of pure reason.Silvia De Bianchi - 2015 - Synthese 192 (8):2395-2412.
    In the section of the Antinomy of pure Reason Kant presents three notions of infinity. By investigating these concepts of infinity, this paper highlights important ‘building blocks’ of the structure of the mathematical antinomies, such as the ability of reason of producing ascending and descending series, as well as the notions of given and givable series. These structural features are discussed in order to clarify Ernst Zermelo’s reading of Kant’s antinomy, according to which the latter is deeply rooted in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Bourbaki’s axiomatic system for set theory.Maribel Anacona, Luis Carlos Arboleda & F. Javier Pérez-Fernández - 2014 - Synthese 191 (17):4069-4098.
    In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign \(\uptau \) in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermelo–Fraenkel system with the axiom of choice but without the axiom of foundation. Moreover, we study Grothendieck’s proposal of adding to Bourbaki’s system the axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Perspective on Hilbert.David E. Rowe - 1997 - Perspectives on Science 5 (4):533-570.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Sets, lies, and analogy: a new methodological take.Giulia Terzian - 2020 - Philosophical Studies 178 (9):2759-2784.
    The starting point of this paper is a claim defended most famously by Graham Priest: that given certain observed similarities between the set-theoretic and the semantic paradoxes, we should be looking for a ‘uniform solution’ to the members of both families. Despite its indisputable surface attractiveness, I argue that this claim hinges on a problematic reasoning move. This is seen most clearly, I suggest, when the claim and its underlying assumptions are examined by the lights of a novel, quite general (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Axiom of Choice and the Road Paved by Sierpiński.Valérie Lynn Therrien - 2020 - Hopos: The Journal of the International Society for the History of Philosophy of Science 10 (2):504-523.
    From 1908 to 1916, articles supporting the axiom of choice were scant. The situation changed in 1916, when Wacław Sierpiński published a series of articles reviving the debate. The posterity of the axiom of choice as we know it would be unimaginable without Sierpiński’s efforts.
    Download  
     
    Export citation  
     
    Bookmark  
  • Notes on the fate of logicism from principia mathematica to gödel's incompletability theorem.I. Grattan-Guinness - 1984 - History and Philosophy of Logic 5 (1):67-78.
    An outline is given of the development of logicism from the publication of the first edition of Whitehead and Russell's Principia mathematica (1910-1913) through the contributions of Wittgenstein, Ramsey and Chwistek to Russell's own modifications made for the second edition of the work (1925) and the adoption of many of its logical techniques by the Vienna Circle. A tendency towards extensionalism is emphasised.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Peirce’s topical theory of continuity.Matthew E. Moore - 2015 - Synthese 192 (4):1-17.
    In the last decade of his life C.S. Peirce began to formulate a purely geometrical theory of continuity to supersede the collection-theoretic theory he began to elaborate around the middle of the 1890s. I argue that Peirce never succeeded in fully formulating the later theory, and that while that there are powerful motivations to adopt that theory within Peirce’s system, it has little to recommend it from an external perspective.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Idealization in Cassirer's philosophy of mathematics.Thomas Mormann - 2008 - Philosophia Mathematica 16 (2):151 - 181.
    The notion of idealization has received considerable attention in contemporary philosophy of science but less in philosophy of mathematics. An exception was the ‘critical idealism’ of the neo-Kantian philosopher Ernst Cassirer. According to Cassirer the methodology of idealization plays a central role for mathematics and empirical science. In this paper it is argued that Cassirer's contributions in this area still deserve to be taken into account in the current debates in philosophy of mathematics. For extremely useful criticisms on earlier versions (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Towards a new philosophical perspective on Hermann Weyl’s turn to intuitionism.Kati Kish Bar-On - 2021 - Science in Context 34 (1):51-68.
    The paper explores Hermann Weyl’s turn to intuitionism through a philosophical prism of normative framework transitions. It focuses on three central themes that occupied Weyl’s thought: the notion of the continuum, logical existence, and the necessity of intuitionism, constructivism, and formalism to adequately address the foundational crisis of mathematics. The analysis of these themes reveals Weyl’s continuous endeavor to deal with such fundamental problems and suggests a view that provides a different perspective concerning Weyl’s wavering foundational positions. Building on a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Which Mathematical Logic is the Logic of Mathematics?Jaakko Hintikka - 2012 - Logica Universalis 6 (3-4):459-475.
    The main tool of the arithmetization and logization of analysis in the history of nineteenth century mathematics was an informal logic of quantifiers in the guise of the “epsilon–delta” technique. Mathematicians slowly worked out the problems encountered in using it, but logicians from Frege on did not understand it let alone formalize it, and instead used an unnecessarily poor logic of quantifiers, viz. the traditional, first-order logic. This logic does not e.g. allow the definition and study of mathematicians’ uniformity concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Developing arithmetic in set theory without infinity: some historical remarks.Charles Parsons - 1987 - History and Philosophy of Logic 8 (2):201-213.
    In this paper some of the history of the development of arithmetic in set theory is traced, particularly with reference to the problem of avoiding the assumption of an infinite set. Although the standard method of singling out a sequence of sets to be the natural numbers goes back to Zermelo, its development was more tortuous than is generally believed. We consider the development in the light of three desiderata for a solution and argue that they can probably not all (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Philosophy, mathematics, science and computation.Enrique V. Kortright - 1994 - Topoi 13 (1):51-60.
    Attempts to lay a foundation for the sciences based on modern mathematics are questioned. In particular, it is not clear that computer science should be based on set-theoretic mathematics. Set-theoretic mathematics has difficulties with its own foundations, making it reasonable to explore alternative foundations for the sciences. The role of computation within an alternative framework may prove to be of great potential in establishing a direction for the new field of computer science.Whitehead''s theory of reality is re-examined as a foundation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Understanding programming languages.Raymond Turner - 2007 - Minds and Machines 17 (2):203-216.
    We document the influence on programming language semantics of the Platonism/formalism divide in the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today.Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.) - 2006 - Dordrecht, Netherland: Springer.
    This book explores the interplay between logic and science, describing new trends, new issues and potential research developments.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Conceptual Metaphors and Mathematical Practice: On Cognitive Studies of Historical Developments in Mathematics.Dirk Schlimm - 2013 - Topics in Cognitive Science 5 (2):283-298.
    This article looks at recent work in cognitive science on mathematical cognition from the perspective of history and philosophy of mathematical practice. The discussion is focused on the work of Lakoff and Núñez, because this is the first comprehensive account of mathematical cognition that also addresses advanced mathematics and its history. Building on a distinction between mathematics as it is presented in textbooks and as it presents itself to the researcher, it is argued that the focus of cognitive analyses of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical intuition vs. mathematical monsters.Solomon Feferman - 2000 - Synthese 125 (3):317-332.
    Geometrical and physical intuition, both untutored andcultivated, is ubiquitous in the research, teaching,and development of mathematics. A number ofmathematical ``monsters'', or pathological objects, havebeen produced which – according to somemathematicians – seriously challenge the reliability ofintuition. We examine several famous geometrical,topological and set-theoretical examples of suchmonsters in order to see to what extent, if at all,intuition is undermined in its everyday roles.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A Structured Argumentation Framework for Modeling Debates in the Formal Sciences.Marcos Cramer & Jérémie Dauphin - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (2):219-241.
    Scientific research in the formal sciences comes in multiple degrees of formality: fully formal work; rigorous proofs that practitioners know to be formalizable in principle; and informal work like rough proof sketches and considerations about the advantages and disadvantages of various formal systems. This informal work includes informal and semi-formal debates between formal scientists, e.g. about the acceptability of foundational principles and proposed axiomatizations. In this paper, we propose to use the methodology of structured argumentation theory to produce a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Beppo Levi’s Analysis of the Paradoxes.Riccardo Bruni - 2013 - Logica Universalis 7 (2):211-231.
    This paper presents and comments the content of a note by Beppo Levi on logical paradoxes. Though the existence of this contribution is known, very little analysis of it is available in the literature. I put the emphasis on Levi’s usage of “elementation procedures” for solving the set-theoretical paradoxes, which is the most original part of Levi’s approach to the topic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Countable choice as a questionable uniformity principle.Peter M. Schuster - 2004 - Philosophia Mathematica 12 (2):106-134.
    Should weak forms of the axiom of choice really be accepted within constructive mathematics? A critical view of the Brouwer-Heyting-Kolmogorov interpretation, accompanied by the intention to include nondeterministic algorithms, leads us to subscribe to Richman's appeal for dropping countable choice. As an alternative interpretation of intuitionistic logic, we propose to renew dialogue semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Putnam and the Indispensability of Mathematics.Otávio Bueno - 2013 - Principia: An International Journal of Epistemology 17 (2):217.
    In this paper, I examine Putnam’s nuanced views in the philosophy of mathematics, distinguishing three proposals: modalism, quasi-empirical realism, and an indispensability view. I argue that, as he shifted through these views, Putnam aimed to preserve a semantic realist account of mathematics that avoids platonism. In the end, however, each of the proposals faces significant difficulties. A form of skepticism then emerges.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Remark on Ascending Chain Conditions, the Countable Axiom of Choice and the Principle of Dependent Choices.Karl-Heinz Diener - 1994 - Mathematical Logic Quarterly 40 (3):415-421.
    It is easy to prove in ZF− that a relation R satisfies the maximal condition if and only if its transitive hull R* does; equivalently: R is well-founded if and only if R* is. We will show in the following that, if the maximal condition is replaced by the chain condition, as is often the case in Algebra, the resulting statement is not provable in ZF− anymore . More precisely, we will prove that this statement is equivalent in ZF− to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Suppes predicates for meta-ranking structures.Marcelo Tsuji - 1997 - Synthese 112 (2):281-299.
    In this paper the general notion of Bourbaki structures, interpreted in terms of Suppes predicates, will be used to axiomatize a system of meta-rankings in the sense introduced by A. K. Sen. It will be argued that this axiomatization must take place in a Kantian-ruled world in order to provide a link between meta-rankings and individual actions.Dedicated to Prof. Francisco A. Doria on his 50th birthday.
    Download  
     
    Export citation  
     
    Bookmark  
  • Historians and Philosophers of Logic: Are They Compatible? The Bolzano-Weierstrass Theorem as a Case Study.Gregory H. Moore - 1999 - History and Philosophy of Logic 20 (3-4):169-180.
    This paper combines personal reminiscences of the philosopher John Corcoran with a discussion of certain conflicts between historians of logic and philosophers of logic. Some mistaken claims about the history of the Bolzano-Weierstrass Theorem are analyzed in detail and corrected.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Fixpoints Without the Natural Numbers.B. Banaschewski - 1991 - Mathematical Logic Quarterly 37 (8):125-128.
    Download  
     
    Export citation  
     
    Bookmark  
  • Please Don't Use Science or Mathematics in Arguing for Human Rights or Natural Law.Alberto Artosi - 2010 - Ratio Juris 23 (3):311-332.
    In the vast literature on human rights and natural law one finds arguments that draw on science or mathematics to support claims to universality and objectivity. Here are two such arguments: 1) Human rights are as universal (i.e., valid independently of their specific historical and cultural Western origin) as the laws and theories of science; and 2) principles of natural law have the same objective (metahistorical) validity as mathematical principles. In what follows I will examine these arguments in some detail (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Book Reviews. [REVIEW][author unknown] - 2005 - History and Philosophy of Logic 26 (2):145-172.
    Download  
     
    Export citation  
     
    Bookmark  
  • ‘Ich habe mich Wohl gehütet, alle patronen auf einmal zu verschießen’. Ernst zermelo in göttingen.Volker Peckhaus - 1990 - History and Philosophy of Logic 11 (1):19-58.
    Zermelos Zeit in Göttingen (1897?1910) kann als wissenschaftlich fruchtbarste Periode in seiner Karriere angesehen werden. Gleichwohl stehen bisher Untersuchungen aus. die eine Einbettung von Zermelos Werk in den biographischen und sozialen Kontext ermöglichen Die vorliegende Studie will diese Lücke unter Konzentration auf zwei Gegenstandsbereiche teileweise ausfüllen: (1) den historischen Entstehungskontext von Zermelos ersten Arbeiten über die Grundlagen der Mengenlehre; (2) die Vorgeschichte und näheren Umstände des 1907 an Zermelo verliehenen Lehrauftrages für mathematische Logik und verwandte Gegenstände. mit dem ein erster (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Naturalizing dissension.Matthew E. Moore - 2006 - Pacific Philosophical Quarterly 87 (3):325–334.
    Mathematical naturalism forbids philosophical interventions in mathematical practice. This principle, strictly construed, places severe constraints on legitimate philosophizing about mathematics; it is also arguably incompatible with mathematical realism. One argument for the latter conclusion charges the realist with inability to take a truly naturalistic view of the Gödel Program in set theory. This argument founders on the disagreement among mathematicians about that program's prospects for success. It also turns out that when disagreements run this deep it is counterproductive to take (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the origins of Dénes König's infinity lemma.Miriam Franchella - 1997 - Archive for History of Exact Sciences 51 (1):3-27.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Axiom of Choice and the Partition Principle from Dialectica Categories.Samuel G. Da Silva - forthcoming - Logic Journal of the IGPL.
    The method of morphisms is a well-known application of Dialectica categories to set theory. In a previous work, Valeria de Paiva and the author have asked how much of the Axiom of Choice is needed in order to carry out the referred applications of such method. In this paper, we show that, when considered in their full generality, those applications of Dialectica categories give rise to equivalents of either the Axiom of Choice or Partition Principle —which is a consequence of (...)
    Download  
     
    Export citation  
     
    Bookmark