Switch to: Citations

Add references

You must login to add references.
  1. Formalizability and Knowledge Ascriptions in Mathematical Practice.Eva Müller-Hill - 2009 - Philosophia Scientiae 13 (2):21-43.
    Nous examinons les conditions de vérité pour des attributions de savoir dans le cas des connaissances mathématiques. La disposition d’une démonstration formalisable semble être un critère naturel :(*) X sait que p est vrai si et seulement si X en principe dispose d’une démonstration formalisable pour p.La formalisabilité pourtant ne joue pas un grand rôle dans la pratique mathématique effective. Nous présentons des résultats d’une recherche empirique qui indiquent que les mathématiciens n’employent pas certaines spécifications de (*) quand ils attribuent (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Objectivity of Mathematics.Stewart Shapiro - 2007 - Synthese 156 (2):337-381.
    The purpose of this paper is to apply Crispin Wright’s criteria and various axes of objectivity to mathematics. I test the criteria and the objectivity of mathematics against each other. Along the way, various issues concerning general logic and epistemology are encountered.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • In search of $$\aleph _{0}$$ ℵ 0 : how infinity can be created.Markus Pantsar - 2015 - Synthese 192 (8):2489-2511.
    In this paper I develop a philosophical account of actual mathematical infinity that does not demand ontologically or epistemologically problematic assumptions. The account is based on a simple metaphor in which we think of indefinitely continuing processes as defining objects. It is shown that such a metaphor is valid in terms of mathematical practice, as well as in line with empirical data on arithmetical cognition.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Number Sense: How the Mind Creates Mathematics.Stanislas Dehaene - 1999 - British Journal of Educational Studies 47 (2):201-203.
    Download  
     
    Export citation  
     
    Bookmark   246 citations  
  • An empirically feasible approach to the epistemology of arithmetic.Markus Pantsar - 2014 - Synthese 191 (17):4201-4229.
    Recent years have seen an explosion of empirical data concerning arithmetical cognition. In this paper that data is taken to be philosophically important and an outline for an empirically feasible epistemological theory of arithmetic is presented. The epistemological theory is based on the empirically well-supported hypothesis that our arithmetical ability is built on a protoarithmetical ability to categorize observations in terms of quantities that we have already as infants and share with many nonhuman animals. It is argued here that arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Neural Plasticity, Neuronal Recycling and Niche Construction.Richard Menary - 2014 - Mind and Language 29 (3):286-303.
    In Reading in the Brain, Stanislas Dehaene presents a compelling account of how the brain learns to read. Central to this account is his neuronal recycling hypothesis: neural circuitry is capable of being ‘recycled’ or converted to a different function that is cultural in nature. The original function of the circuitry is not entirely lost and constrains what the brain can learn. It is argued that the neural niche co-evolves with the environmental niche in a way that does not undermine (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • (1 other version)Platonism in the Philosophy of Mathematics.Øystein Linnebo - forthcoming - Stanford Encyclopedia of Philosophy.
    Platonism about mathematics (or mathematical platonism) isthe metaphysical view that there are abstract mathematical objectswhose existence is independent of us and our language, thought, andpractices. Just as electrons and planets exist independently of us, sodo numbers and sets. And just as statements about electrons and planetsare made true or false by the objects with which they are concerned andthese objects' perfectly objective properties, so are statements aboutnumbers and sets. Mathematical truths are therefore discovered, notinvented., Existence. There are mathematical objects.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Nominalism, Trivialism, Logicism.Agustín Rayo - 2015 - Philosophia Mathematica 23 (1):nku013.
    This paper extracts some of the main theses in the philosophy of mathematics from my book, The Construction of Logical Space. I show that there are important limits to the availability of nominalistic paraphrase functions for mathematical languages, and suggest a way around the problem by developing a method for specifying nominalistic contents without corresponding nominalistic paraphrases. Although much of the material in this paper is drawn from the book — and from an earlier paper — I hope the present (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • What Makes a Scientific Explanation Distinctively Mathematical?Marc Lange - 2013 - British Journal for the Philosophy of Science 64 (3):485-511.
    Certain scientific explanations of physical facts have recently been characterized as distinctively mathematical –that is, as mathematical in a different way from ordinary explanations that employ mathematics. This article identifies what it is that makes some scientific explanations distinctively mathematical and how such explanations work. These explanations are non-causal, but this does not mean that they fail to cite the explanandum’s causes, that they abstract away from detailed causal histories, or that they cite no natural laws. Rather, in these explanations, (...)
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures.Pierre Pica, Stanislas Dehaene, Elizabeth Spelke & Véronique Izard - 2008 - Science 320 (5880):1217-1220.
    The mapping of numbers onto space is fundamental to measurement and to mathematics. Is this mapping a cultural invention or a universal intuition shared by all humans regardless of culture and education? We probed number-space mappings in the Mundurucu, an Amazonian indigene group with a reduced numerical lexicon and little or no formal education. At all ages, the Mundurucu mapped symbolic and nonsymbolic numbers onto a logarithmic scale, whereas Western adults used linear mapping with small or symbolic numbers and logarithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Exact and Approximate Arithmetic in an Amazonian Indigene Group.Pierre Pica, Cathy Lemer, Véronique Izard & Stanislas Dehaene - 2004 - Science 306 (5695):499-503.
    Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers larger than 4 (...)
    Download  
     
    Export citation  
     
    Bookmark   175 citations  
  • Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Core knowledge.Elizabeth S. Spelke - 2000 - American Psychologist 55 (11):1233-1243.
    Complex cognitive skills such as reading and calculation and complex cognitive achievements such as formal science and mathematics may depend on a set of building block systems that emerge early in human ontogeny and phylogeny. These core knowledge systems show characteristic limits of domain and task specificity: Each serves to represent a particular class of entities for a particular set of purposes. By combining representations from these systems, however human cognition may achieve extraordinary flexibility. Studies of cognition in human infants (...)
    Download  
     
    Export citation  
     
    Bookmark   213 citations  
  • The Cultural Origins of Human Cognition.Michael Tomasello - 1999 - Harvard University Press.
    Ambitious and elegant, this book builds a bridge between evolutionary theory and cultural psychology. Michael Tomasello is one of the very few people to have done systematic research on the cognitive capacities of both nonhuman primates and human children. The Cultural Origins of Human Cognition identifies what the differences are, and suggests where they might have come from. -/- Tomasello argues that the roots of the human capacity for symbol-based culture, and the kind of psychological development that takes place within (...)
    Download  
     
    Export citation  
     
    Bookmark   643 citations  
  • Science Without Numbers: A Defence of Nominalism.Hartry H. Field - 1980 - Princeton, NJ, USA: Princeton University Press.
    Science Without Numbers caused a stir in 1980, with its bold nominalist approach to the philosophy of mathematics and science. It has been unavailable for twenty years and is now reissued in a revised edition with a substantial new preface presenting the author's current views and responses to the issues raised in subsequent debate.
    Download  
     
    Export citation  
     
    Bookmark   559 citations  
  • Mathematics Without Numbers: Towards a Modal-Structural Interpretation.Geoffrey Hellman - 1989 - Oxford, England: Oxford University Press.
    Develops a structuralist understanding of mathematics, as an alternative to set- or type-theoretic foundations, that respects classical mathematical truth while ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  • Ontology and the vicious-circle principle.Charles S. Chihara - 1973 - Ithaca [N.Y.]: Cornell University Press.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • The origin of concepts.Susan Carey - 2009 - New York: Oxford University Press.
    Only human beings have a rich conceptual repertoire with concepts like tort, entropy, Abelian group, mannerism, icon and deconstruction. How have humans constructed these concepts? And once they have been constructed by adults, how do children acquire them? While primarily focusing on the second question, in The Origin of Concepts , Susan Carey shows that the answers to both overlap substantially. Carey begins by characterizing the innate starting point for conceptual development, namely systems of core cognition. Representations of core cognition (...)
    Download  
     
    Export citation  
     
    Bookmark   482 citations  
  • The Indispensability of Mathematics.Mark Colyvan - 2001 - Oxford, England: Oxford University Press.
    This book not only outlines the indispensability argument in considerable detail but also defends it against various challenges.
    Download  
     
    Export citation  
     
    Bookmark   275 citations  
  • The reason's proper study: essays towards a neo-Fregean philosophy of mathematics.Crispin Wright & Bob Hale - 2001 - Oxford: Clarendon Press. Edited by Crispin Wright.
    Here, Bob Hale and Crispin Wright assemble the key writings that lead to their distinctive neo-Fregean approach to the philosophy of mathematics. In addition to fourteen previously published papers, the volume features a new paper on the Julius Caesar problem; a substantial new introduction mapping out the program and the contributions made to it by the various papers; a section explaining which issues most require further attention; and bibliographies of references and further useful sources. It will be recognized as the (...)
    Download  
     
    Export citation  
     
    Bookmark   273 citations  
  • The taming of the true.Neil Tennant - 1997 - New York: Oxford University Press.
    The Taming of the True poses a broad challenge to realist views of meaning and truth that have been prominent in recent philosophy. Neil Tennant argues compellingly that every truth is knowable, and that an effective logical system can be based on this principle. He lays the foundations for global semantic anti-realism and extends its consequences from the philosophy of mathematics and logic to the theory of meaning, metaphysics, and epistemology.
    Download  
     
    Export citation  
     
    Bookmark   197 citations  
  • Truth and objectivity.Crispin Wright - 1992 - Cambridge: Harvard University Press.
    Recasting important questions about truth and objectivity in new and helpful terms, his book will become a focus in the contemporary debates over realism, and ...
    Download  
     
    Export citation  
     
    Bookmark   683 citations  
  • Knowledge and social imagery.David Bloor - 1976 - Chicago: University of Chicago Press.
    The first edition of this book profoundly challenged and divided students of philosophy, sociology, and the history of science when it was published in 1976. In this second edition, Bloor responds in a substantial new Afterword to the heated debates engendered by his book.
    Download  
     
    Export citation  
     
    Bookmark   458 citations  
  • Mathematics without foundations.Hilary Putnam - 1967 - Journal of Philosophy 64 (1):5-22.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • (2 other versions)Mathematical truth.Paul Benacerraf - 1973 - Journal of Philosophy 70 (19):661-679.
    Download  
     
    Export citation  
     
    Bookmark   701 citations  
  • Bootstrapping of integer concepts: the stronger deviant-interpretation challenge.Markus Pantsar - 2021 - Synthese 199 (3-4):5791-5814.
    Beck presents an outline of the procedure of bootstrapping of integer concepts, with the purpose of explicating the account of Carey. According to that theory, integer concepts are acquired through a process of inductive and analogous reasoning based on the object tracking system, which allows individuating objects in a parallel fashion. Discussing the bootstrapping theory, Beck dismisses what he calls the "deviant-interpretation challenge"—the possibility that the bootstrapped integer sequence does not follow a linear progression after some point—as being general to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics.Markus Pantsar - 2021 - Minds and Machines 31 (1):75-98.
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can feasibly work as computational (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical cognition and enculturation: introduction to the Synthese special issue.Markus Pantsar - 2020 - Synthese 197 (9):3647-3655.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Cognitive and Computational Complexity: Considerations from Mathematical Problem Solving.Markus Pantsar - 2019 - Erkenntnis 86 (4):961-997.
    Following Marr’s famous three-level distinction between explanations in cognitive science, it is often accepted that focus on modeling cognitive tasks should be on the computational level rather than the algorithmic level. When it comes to mathematical problem solving, this approach suggests that the complexity of the task of solving a problem can be characterized by the computational complexity of that problem. In this paper, I argue that human cognizers use heuristic and didactic tools and thus engage in cognitive processes that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Enculturated Move From Proto-Arithmetic to Arithmetic.Markus Pantsar - 2019 - Frontiers in Psychology 10.
    The basic human ability to treat quantitative information can be divided into two parts. With proto-arithmetical ability, based on the core cognitive abilities for subitizing and estimation, numerosities can be treated in a limited and/or approximate manner. With arithmetical ability, numerosities are processed (counted, operated on) systematically in a discrete, linear, and unbounded manner. In this paper, I study the theory of enculturation as presented by Menary (2015) as a possible explanation of how we make the move from the proto-arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 1997 - Oxford, England: Oxford University Press USA.
    Moving beyond both realist and anti-realist accounts of mathematics, Shapiro articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • Cognitive Innovation, Cumulative Cultural Evolution, and Enculturation.Regina E. Fabry - 2017 - Journal of Cognition and Culture 17 (5):375-395.
    Cognitive innovation has shaped and transformed our cognitive capacities throughout history. Until recently, cognitive innovation has not received much attention by empirical and conceptual research in the cognitive sciences. This paper is a first attempt to help close this gap. It will be argued that cognitive innovation is best understood in connection with cumulative cultural evolution and enculturation. Cumulative cultural evolution plays a vital role for the inter-generational transmission of the products of cognitive innovation. Furthermore, there are at least two (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Early numerical cognition and mathematical processes.Markus Pantsar - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):285-304.
    In this paper I study the development of arithmetical cognition with the focus on metaphorical thinking. In an approach developing on Lakoff and Núñez, I propose one particular conceptual metaphor, the Process → Object Metaphor, as a key element in understanding the development of mathematical thinking.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Literate education in classical Athens.T. J. Morgan - 1999 - Classical Quarterly 49 (1):46-61.
    In the study of education, as in many more travelled regions of Classical scholarship, democratic Athens is something of a special case. The cautions formulation is appropriate: in the case of education, surprisingly few studies have sought to establish quite how special Athens was, and those which have, have often raised more questions than they answered. The subject itself is partly to blame. The history of education invites comparison with the present day, while those planning the future of education rarely (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Numerical cognition and mathematical realism.Helen De Cruz - 2016 - Philosophers' Imprint 16.
    Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by Clarke-Doane, or does it bolster mathematical realism, as authors such as Joyce and Sinnott-Armstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and propose that they prima (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Construction of Logical Space.Agustín Rayo - 2013 - Oxford, England: Oxford University Press.
    Our conception of logical space is the set of distinctions we use to navigate the world. Agustn Rayo argues that this is shaped by acceptance or rejection of 'just is'-statements: e.g. 'to be composed of water just is to be composed of H2O'. He offers a novel conception of metaphysical possibility, and a new trivialist philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   158 citations  
  • On the ‘Indispensable Explanatory Role’ of Mathematics.Juha Saatsi - 2016 - Mind 125 (500):1045-1070.
    The literature on the indispensability argument for mathematical realism often refers to the ‘indispensable explanatory role’ of mathematics. I argue that we should examine the notion of explanatory indispensability from the point of view of specific conceptions of scientific explanation. The reason is that explanatory indispensability in and of itself turns out to be insufficient for justifying the ontological conclusions at stake. To show this I introduce a distinction between different kinds of explanatory roles—some ‘thick’ and ontologically committing, others ‘thin’ (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Nominalism.Charles Chihara - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 483--514.
    Nominalism is the view that abstract mathematical objects like numbers, functions, and sets do not exist. The chapter articulates and defends a variety of nominalism, based on a reading of mathematical statements in terms of possible linguistic constructions. The chapter responds directly to a recent study of nominalism by Gideon Rosen and John Burgess, and develops a reply to the Quine-Putnam indispensability argument for the existence of mathematical objects.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The taming of the true.Michael Glanzberg - 2000 - Philosophical Review 109 (2):290-293.
    The Taming of the True continues the project Neil Tennant began in Anti-realism and Logic of investigating and defending anti-realism. Tennant’s earlier book anticipated a second volume, in which issues related to empirical discourse would be addressed in greater detail. The Taming of the True provides this sequel. It also attempts a ground-clearing project, by addressing challenges to some of the presuppositions and implications of Tennant’s anti-realist position. Finally, it takes an opportunity to revisit some of the issues examined in (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Exact equality and successor function: Two key concepts on the path towards understanding exact numbers.Véronique Izard, Pierre Pica, Elizabeth S. Spelke & Stanislas Dehaene - 2008 - Philosophical Psychology 21 (4):491 – 505.
    Humans possess two nonverbal systems capable of representing numbers, both limited in their representational power: the first one represents numbers in an approximate fashion, and the second one conveys information about small numbers only. Conception of exact large numbers has therefore been thought to arise from the manipulation of exact numerical symbols. Here, we focus on two fundamental properties of the exact numbers as prerequisites to the concept of EXACT NUMBERS : the fact that all numbers can be generated by (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Mathematical Explanation in Science.Alan Baker - 2009 - British Journal for the Philosophy of Science 60 (3):611-633.
    Does mathematics ever play an explanatory role in science? If so then this opens the way for scientific realists to argue for the existence of mathematical entities using inference to the best explanation. Elsewhere I have argued, using a case study involving the prime-numbered life cycles of periodical cicadas, that there are examples of indispensable mathematical explanations of purely physical phenomena. In this paper I respond to objections to this claim that have been made by various philosophers, and I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Set representations required for the acquisition of the “natural number” concept.Justin Halberda & Lisa Feigenson - 2008 - Behavioral and Brain Sciences 31 (6):655-656.
    Rips et al. consider whether representations of individual objects or analog magnitudes are building blocks for the concept natural number. We argue for a third core capacity – the ability to bind representations of individuals into sets. However, even with this addition to the list of starting materials, we agree that a significant acquisition story is needed to capture natural number.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Introduction.Øystein Linnebo - 2017 - In Philosophy of Mathematics. Princeton, NJ: Princeton University Press. pp. 1-3.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Philosophy of Mathematics.Øystein Linnebo - 2017 - Princeton, NJ: Princeton University Press.
    Mathematics is one of the most successful human endeavors—a paradigm of precision and objectivity. It is also one of our most puzzling endeavors, as it seems to deliver non-experiential knowledge of a non-physical reality consisting of numbers, sets, and functions. How can the success and objectivity of mathematics be reconciled with its puzzling features, which seem to set it apart from all the usual empirical sciences? This book offers a short but systematic introduction to the philosophy of mathematics. Readers are (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2000 - Philosophical Quarterly 50 (198):120-123.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • Naturalizing Logico-Mathematical Knowledge: Approaches From Psychology and Cognitive Science.Sorin Bangu (ed.) - 2018 - New York: Routledge.
    This book is meant as a part of the larger contemporary philosophical project of naturalizing logico-mathematical knowledge, and addresses the key question that motivates most of the work in this field: What is philosophically relevant about the nature of logico-mathematical knowledge in recent research in psychology and cognitive science? The question about this distinctive kind of knowledge is rooted in Plato’s dialogues, and virtually all major philosophers have expressed interest in it. The essays in this collection tackle this important philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logical consequence, proof theory, and model theory.Stewart Shapiro - 2005 - In Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 651--670.
    This chapter provides broad coverage of the notion of logical consequence, exploring its modal, semantic, and epistemic aspects. It develops the contrast between proof-theoretic notion of consequence, in terms of deduction, and a model-theoretic approach, in terms of truth-conditions. The main purpose is to relate the formal, technical work in logic to the philosophical concepts that underlie reasoning.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The Enhanced Indispensability Argument: Representational versus Explanatory Role of Mathematics in Science.Juha Saatsi - 2011 - British Journal for the Philosophy of Science 62 (1):143-154.
    The Enhanced Indispensability Argument (Baker [ 2009 ]) exemplifies the new wave of the indispensability argument for mathematical Platonism. The new wave capitalizes on mathematics' role in scientific explanations. I will criticize some analyses of mathematics' explanatory function. In turn, I will emphasize the representational role of mathematics, and argue that the debate would significantly benefit from acknowledging this alternative viewpoint to mathematics' contribution to scientific explanations and knowledge.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • A System of Logic.John Stuart Mill - 1829/2002 - Longman.
    Reprint of the original, first published in 1869.
    Download  
     
    Export citation  
     
    Bookmark   560 citations  
  • Are there genuine mathematical explanations of physical phenomena?Alan Baker - 2005 - Mind 114 (454):223-238.
    Many explanations in science make use of mathematics. But are there cases where the mathematical component of a scientific explanation is explanatory in its own right? This issue of mathematical explanations in science has been for the most part neglected. I argue that there are genuine mathematical explanations in science, and present in some detail an example of such an explanation, taken from evolutionary biology, involving periodical cicadas. I also indicate how the answer to my title question impacts on broader (...)
    Download  
     
    Export citation  
     
    Bookmark   257 citations