Switch to: References

Add citations

You must login to add citations.
  1. Franklin, Holmes, and the epistemology of computer simulation.Wendy S. Parker - 2008 - International Studies in the Philosophy of Science 22 (2):165 – 183.
    Allan Franklin has identified a number of strategies that scientists use to build confidence in experimental results. This paper shows that Franklin's strategies have direct analogues in the context of computer simulation and then suggests that one of his strategies—the so-called 'Sherlock Holmes' strategy—deserves a privileged place within the epistemologies of experiment and simulation. In particular, it is argued that while the successful application of even several of Franklin's other strategies (or their analogues in simulation) may not be sufficient for (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Experiments, Simulations, and Epistemic Privilege.Emily C. Parke - 2014 - Philosophy of Science 81 (4):516-536.
    Experiments are commonly thought to have epistemic privilege over simulations. Two ideas underpin this belief: first, experiments generate greater inferential power than simulations, and second, simulations cannot surprise us the way experiments can. In this article I argue that neither of these claims is true of experiments versus simulations in general. We should give up the common practice of resting in-principle judgments about the epistemic value of cases of scientific inquiry on whether we classify those cases as experiments or simulations, (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Evidence and Knowledge from Computer Simulation.Wendy S. Parker - 2020 - Erkenntnis 87 (4):1521-1538.
    Can computer simulation results be evidence for hypotheses about real-world systems and phenomena? If so, what sort of evidence? Can we gain genuinely new knowledge of the world via simulation? I argue that evidence from computer simulation is aptly characterized as higher-order evidence: it is evidence that other evidence regarding a hypothesis about the world has been collected. Insofar as particular epistemic agents do not have this other evidence, it is possible that they will gain genuinely new knowledge of the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • An Instrument for What? Digital Computers, Simulation and Scientific Practice.Wendy S. Parker - 2010 - Spontaneous Generations 4 (1):39-44.
    As a device used by scientists in the course of performing research, the digital computer might be considered a scientific instrument. But if so, what is it an instrument for? This paper explores a number of answers to this question, focusing on the use of computers in a simulating mode.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Real and Virtual Clinical Trials: A Formal Analysis.Barbara Osimani, Marta Bertolaso, Roland Poellinger & Emanuele Frontoni - 2018 - Topoi 38 (2):411-422.
    If well-designed, the results of a Randomised Clinical Trial can justify a causal claim between treatment and effect in the study population; however, additional information might be needed to carry over this result to another population. RCTs have been criticized exactly on grounds of failing to provide this sort of information Evidence, inference and enquiry. Oxford University Press, New York, 2011), as well as to black-box important details regarding the mechanisms underpinning the causal law instantiated by the RCT result. On (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Microbes, mathematics, and models.Maureen A. O'Malley & Emily C. Parke - 2018 - Studies in History and Philosophy of Science Part A 72:1-10.
    Microbial model systems have a long history of fruitful use in fields that include evolution and ecology. In order to develop further insight into modelling practice, we examine how the competitive exclusion and coexistence of competing species have been modelled mathematically and materially over the course of a long research history. In particular, we investigate how microbial models of these dynamics interact with mathematical or computational models of the same phenomena. Our cases illuminate the ways in which microbial systems and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Trustworthy simulations and their epistemic hierarchy.Peter Mättig - 2021 - Synthese 199 (5-6):14427-14458.
    We analyze the usage of computer simulation at the LHC and derive seven jointly necessary requirements for a simulation to be considered ’trustworthy’, such that it can be used as proxy for experiments. We show that these requirements can also be applied to systems without direct experimental access and discuss their validity for properties that have not yet been probed. While being necessary, these requirements are not sufficient. Such trustworthy simulations will be analyzed for the relative epistemic statuses of simulation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Models, measurement and computer simulation: the changing face of experimentation.Margaret Morrison - 2009 - Philosophical Studies 143 (1):33-57.
    The paper presents an argument for treating certain types of computer simulation as having the same epistemic status as experimental measurement. While this may seem a rather counterintuitive view it becomes less so when one looks carefully at the role that models play in experimental activity, particularly measurement. I begin by discussing how models function as “measuring instruments” and go on to examine the ways in which simulation can be said to constitute an experimental activity. By focussing on the connections (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Computer simulations and experiments: The case of the Higgs boson.Michela Massimi & Wahid Bhimji - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 51 (C):71-81.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Racial Attitudes, Accumulation Mechanisms, and Disparities.Ron Mallon - 2021 - Review of Philosophy and Psychology 12 (4):953-975.
    Some psychologists aim to secure a role for psychological explanations in understanding contemporary social disparities, a concern that plays out in debates over the relevance of the Implicit Association Test. Meta-analysts disagree about the predictive validity of the IAT and about the importance of implicit attitudes in explaining racial disparities. Here, I use the IAT to articulate and explore one route to establishing the relevance of psychological attitudes with small effects: an appeal to a process of “accumulation” that aggregates small (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Coupling simulation and experiment: The bimodal strategy in integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4a):572-584.
    The importation of computational methods into biology is generating novel methodological strategies for managing complexity which philosophers are only just starting to explore and elaborate. This paper aims to enrich our understanding of methodology in integrative systems biology, which is developing novel epistemic and cognitive strategies for managing complex problem-solving tasks. We illustrate this through developing a case study of a bimodal researcher from our ethnographic investigation of two systems biology research labs. The researcher constructed models of metabolic and cell-signaling (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Computer simulation and the features of novel empirical data.Greg Lusk - 2016 - Studies in History and Philosophy of Science Part A 56:145-152.
    In an attempt to determine the epistemic status of computer simulation results, philosophers of science have recently explored the similarities and differences between computer simulations and experiments. One question that arises is whether and, if so, when, simulation results constitute novel empirical data. It is often supposed that computer simulation results could never be empirical or novel because simulations never interact with their targets, and cannot go beyond their programming. This paper argues against this position by examining whether, and under (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Why experiments matter.Arnon Levy & Adrian Currie - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (9-10):1066-1090.
    ABSTRACTExperimentation is traditionally considered a privileged means of confirmation. However, why and how experiments form a better confirmatory source relative to other strategies is unclear, and recent discussions have identified experiments with various modeling strategies on the one hand, and with ‘natural’ experiments on the other hand. We argue that experiments aiming to test theories are best understood as controlled investigations of specimens. ‘Control’ involves repeated, fine-grained causal manipulation of focal properties. This capacity generates rich knowledge of the object investigated. (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Classificatory Theory in Biology.Sabina Leonelli - 2013 - Biological Theory 7 (4):338-345.
    Scientific classification has long been recognized as involving a specific style of reasoning and doing research, and as occasionally affecting the development of scientific theories. However, the role played by classificatory activities in generating theories has not been closely investigated within the philosophy of science. I argue that classificatory systems can themselves become a form of theory, which I call classificatory theory, when they come to formalize and express the scientific significance of the elements being classified. This is particularly evident (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Data Interpretation in the Digital Age.Sabina Leonelli - 2014 - Perspectives on Science 22 (3):397-417.
    Scientific knowledge production is currently affected by the dissemination of data on an unprecedented scale. Technologies for the automated production and sharing of vast amounts of data have changed the way in which data are handled and interpreted in several scientific domains, most notably molecular biology and biomedicine. In these fields, the activity of data gathering has become increasingly technology-driven, with machines such as next generation genome sequencers and mass spectrometers generating billions of data points within hours, and with little (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Simulated Data in Empirical Science.Aki Lehtinen & Jani Raerinne - forthcoming - Foundations of Science:1-22.
    This paper provides the first systematic epistemological account of simulated data in empirical science. We focus on the epistemic issues modelers face when they generate simulated data to solve problems with empirical datasets, research tools, or experiments. We argue that for simulated data to count as epistemically reliable, a simulation model does not have to mimic its target. Instead, some models take empirical data as a target, and simulated data may successfully mimic such a target even if the model does (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Standing on the Shoulders of Giants—And Then Looking the Other Way? Epistemic Opacity, Immersion, and Modeling in Hydraulic Engineering.Matthijs Kouw - 2016 - Perspectives on Science 24 (2):206-227.
    Over the course of the twentieth century, hydraulic engineering has come to rely primarily on the use of computational models. Disco and van den Ende hint towards the reasons for widespread adoption of computational models by pointing out that such models fulfill a crucial role as management tools in Dutch water management, and meet a more general desire to quantify water-related phenomena. The successful application of computational models implies blackboxing : “[w]hen a machine runs efficiently … one need focus only (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Synthetic Modeling and Mechanistic Account: Material Recombination and Beyond.Tarja Knuuttila & Andrea Loettgers - 2013 - Philosophy of Science 80 (5):874-885.
    Recently, Bechtel and Abrahamsen have argued that mathematical models study the dynamics of mechanisms by recomposing the components and their operations into an appropriately organized system. We will study this claim through the practice of combinational modeling in circadian clock research. In combinational modeling, experiments on model organisms and mathematical/computational models are combined with a new type of model—a synthetic model. We argue that the strategy of recomposition is more complicated than what Bechtel and Abrahamsen indicate. Moreover, synthetic modeling as (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Biological Control Variously Materialized: Modeling, Experimentation and Exploration in Multiple Media.Tarja Knuuttila & Andrea Loettgers - 2021 - Perspectives on Science 29 (4):468-492.
    This paper examines two parallel discussions of scientific modeling which have invoked experimentation in addressing the role of models in scientific inquiry. One side discusses the experimental character of models, whereas the other focuses on their exploratory uses. Although both relate modeling to experimentation, they do so differently. The former has considered the similarities and differences between models and experiments, addressing, in particular, the epistemic value of materiality. By contrast, the focus on exploratory modeling has highlighted the various kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Causal isolation robustness analysis: the combinatorial strategy of circadian clock research.Tarja Knuuttila & Andrea Loettgers - 2011 - Biology and Philosophy 26 (5):773-791.
    This paper distinguishes between causal isolation robustness analysis and independent determination robustness analysis and suggests that the triangulation of the results of different epistemic means or activities serves different functions in them. Circadian clock research is presented as a case of causal isolation robustness analysis: in this field researchers made use of the notion of robustness to isolate the assumed mechanism behind the circadian rhythm. However, in contrast to the earlier philosophical case studies on causal isolation robustness analysis (Weisberg and (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Robot life: simulation and participation in the study of evolution and social behavior.Christopher M. Kelty - 2018 - History and Philosophy of the Life Sciences 40 (1):16.
    This paper explores the case of using robots to simulate evolution, in particular the case of Hamilton’s Law. The uses of robots raises several questions that this paper seeks to address. The first concerns the role of the robots in biological research: do they simulate something or do they participate in something? The second question concerns the physicality of the robots: what difference does embodiment make to the role of the robot in these experiments. Thirdly, how do life, embodiment and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Epistemological Framework for Computer Simulations in Building Science Research: Insights from Theory and Practice.Amos Kalua & James Jones - 2020 - Philosophies 5 (4):30.
    Computer simulations are widely used within the area of building science research. Building science research deals with the physical phenomena that affect buildings, including heat and mass transfer, lighting and acoustic transmission. This wide usage of computer simulations, however, is characterized by a divergence in thought on the composition of an epistemological framework that may provide guidance for their deployment in research. This paper undertakes a fundamental review of the epistemology of computer simulations within the context of the philosophy of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computer Simulation, Experiment, and Novelty.Julie Jebeile - 2017 - International Studies in the Philosophy of Science 31 (4):379-395.
    It is often said that computer simulations generate new knowledge about the empirical world in the same way experiments do. My aim is to make sense of such a claim. I first show that the similarities between computer simulations and experiments do not allow them to generate new knowledge but invite the simulationist to interact with simulations in an experimental manner. I contend that, nevertheless, computer simulations and experiments yield new knowledge under the same epistemic circumstances, independently of any features (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Les simulations sont-elles des expériences numériques?Julie Jebeile - 2016 - Dialogue 55 (1):59-86.
    Some philosophers see an analogy between simulation and experiment. But, once we acknowledge some similarities between computer simulations and experiments, can we conclude from them that simulations generate empirical knowledge, as experiments do? In this paper, I argue that the similarities between simulation and experiment give the scientist at most the illusion that she is conducting an experiment, but cannot seriously ground the analogy. However, it does not follow that experiments are always epistemologically superior to simulations. I analyze the cases (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Observations, Simulations, and Reasoning in Astrophysics.Melissa Jacquart - 2020 - Philosophy of Science 87 (5):1209-1220.
    Astrophysics faces methodological challenges as a result of being a predominantly observation-based science without access to traditional experiments. In light of these challenges, astrophysicists frequently rely on computer simulations. Using collisional ring galaxies as a case study, I argue that computer simulations play three roles in reasoning in astrophysics: (1) hypothesis testing, (2) exploring possibility space, and (3) amplifying observations.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What is a Beautiful Experiment?Milena Ivanova - 2022 - Erkenntnis 88 (8):3419-3437.
    This article starts an engagement on the aesthetics of experiments and offers an account for analysing how aesthetics features in the design, evaluation and reception of experiments. I identify two dimensions of aesthetic evaluation of experiments: design and significance. When it comes to design, a number of qualities, such as simplicity, economy and aptness, are analysed and illustrated with the famous Meselson-Stahl experiment. Beautiful experiments are also regarded to make significant discoveries, but I argue against a narrow construal of experimental (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Putting the Cart Before the Horse: Co-evolution of the Universe and Observers as an Explanatory Hypothesis.Milan M. Ćirković & Jelena Dimitrijević - 2018 - Foundations of Science 23 (3):427-442.
    The answer to the fine-tuning problem of the universe has been traditionally sought in terms of either design or multiverse. In philosophy circles, this is sometimes expanded by adding the option of explanatory nihilism—the claim that there is no explanation for statements of that high level of generality: fine-tunings are brute facts. In this paper, we consider the fourth option which, at least in principle, is available to us: co-evolution of the universe and observers. Although conceptual roots of this approach (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mutant mice: Experimental organisms as materialised models in biomedicine.Lara Huber & Lara K. Keuck - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):385-391.
    Animal models have received particular attention as key examples of material models. In this paper, we argue that the specificities of establishing animal models—acknowledging their status as living beings and as epistemological tools—necessitate a more complex account of animal models as materialised models. This becomes particularly evident in animal-based models of diseases that only occur in humans: in these cases, the representational relation between animal model and human patient needs to be generated and validated. The first part of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Climate Simulations: Uncertain Projections for an Uncertain World.Rafaela Hillerbrand - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (1):17-32.
    Between the fourth and the recent fifth IPCC report, science as well as policy making have made great advances in dealing with uncertainties in global climate models. However, the uncertainties public decision making has to deal with go well beyond what is currently addressed by policy makers and climatologists alike. It is shown in this paper that within an anthropocentric framework, a whole hierarchy of models from various scientific disciplines is needed for political decisions as regards climate change. Via what (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Understanding and misunderstanding computer simulation: The case of atmospheric and climate science—An introduction.Matthias Heymann - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (3):193-200.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Understanding and misunderstanding computer simulation: The case of atmospheric and climate science—An introduction.Matthias Heymann - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (3):193-200.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Technology and Mathematics.Sven Ove Hansson - 2020 - Philosophy and Technology 33 (1):117-139.
    In spite of their practical importance, the connections between technology and mathematics have not received much scholarly attention. This article begins by outlining how the technology–mathematics relationship has developed, from the use of simple aide-mémoires for counting and arithmetic, via the use of mathematics in weaving, building and other trades, and the introduction of calculus to solve technological problems, to the modern use of computers to solve both technological and mathematical problems. Three important philosophical issues emerge from this historical résumé: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Simulation and Calibration: Mitigating Uncertainty.Deborah Haar - 2021 - Philosophy of Science 88 (5):985-996.
    Calibrating a simulation is a crucial step for certain kinds of simulation modeling, and it results in a simulation that is epistemically different from its pre- or uncalibrated counterpart. This article discusses how simulation model builders mitigate uncertainty about model parameters that are necessary for modeling through calibration and argues that the simulation outcomes after calibration are physically meaningful and relevant. When evaluating the epistemic status of computer simulations, comparisons between computer simulations and traditional experiments need to consider this important (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How simulations fail.Patrick Grim, Robert Rosenberger, Adam Rosenfeld, Brian Anderson & Robb E. Eason - 2011 - Synthese 190 (12):2367-2390.
    ‘The problem with simulations is that they are doomed to succeed.’ So runs a common criticism of simulations—that they can be used to ‘prove’ anything and are thus of little or no scientific value. While this particular objection represents a minority view, especially among those who work with simulations in a scientific context, it raises a difficult question: what standards should we use to differentiate a simulation that fails from one that succeeds? In this paper we build on a structural (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Epistemological Issues Concerning Computer Simulations in Science and Their Implications for Science Education.Ileana M. Greca, Eugenia Seoane & Irene Arriassecq - 2014 - Science & Education 23 (4):897-921.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Global Climate Modeling as Applied Science.William M. Goodwin - 2015 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 46 (2):339-350.
    In this paper I argue that the appropriate analogy for “understanding what makes simulation results reliable” in global climate modeling is not with scientific experimentation or measurement, but—at least in the case of the use of global climate models for policy development—with the applications of science in applied design problems. The prospects for using this analogy to argue for the quantitative reliability of GCMs are assessed and compared with other potential strategies.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Global Climate Modeling as Applied Science.William M. Goodwin - 2015 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 46 (2):339-350.
    In this paper I argue that the appropriate analogy for “understanding what makes simulation results reliable” in Global Climate Modeling is not with scientific experimentation or measurement, but—at least in the case of the use of global climate models for policy development—with the applications of science in engineering design problems. The prospects for using this analogy to argue for the quantitative reliability of GCMs are assessed and compared with other potential strategies.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Experiments and Theory in the Preparative Sciences.William Goodwin - 2012 - Philosophy of Science 79 (4):429-447.
    In this essay I consider, by way of the reflections of accomplished synthetic chemists, how the experimental work of the synthetic organic chemist supports the testing, refinement, and creation of theories of organic chemistry. The role of experiments in modern Baconian sciences like organic chemistry is contrasted with their role in fields of more traditional philosophical concern, such as experimental physics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computer simulations and experiments: in vivo–in vitro conditions in biochemistry.Pio Garcia - 2015 - Foundations of Chemistry 17 (1):49-65.
    Scientific practices have been changed by the increasing use of computer simulations. A central question for philosophers is how to characterize computer simulations. In this paper, we address this question by analyzing simulations in biochemistry. We propose that simulations have been used in biochemistry long before computers arrived. Simulation can be described as a surrogate relationship between models. Moreover, a simulative aspect is implicit in the classical dichotomy between in vivo–in vitro conditions. Based on a discussion about how to characterize (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Value of Surprise in Science.Steven French & Alice Murphy - 2023 - Erkenntnis 88 (4):1447-1466.
    Scientific results are often presented as ‘surprising’ as if that is a good thing. Is it? And if so, why? What is the value of surprise in science? Discussions of surprise in science have been limited, but surprise has been used as a way of defending the epistemic privilege of experiments over simulations. The argument is that while experiments can ‘confound’, simulations can merely surprise (Morgan, 2005). Our aim in this paper is to show that the discussion of surprise can (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Generative models: Human embryonic stem cells and multiple modeling relations.Melinda Bonnie Fagan - 2016 - Studies in History and Philosophy of Science Part A 56:122-134.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Unfolding in the empirical sciences: experiments, thought experiments and computer simulations.Rawad El Skaf & Cyrille Imbert - 2013 - Synthese 190 (16):3451-3474.
    Experiments (E), computer simulations (CS) and thought experiments (TE) are usually seen as playing different roles in science and as having different epistemologies. Accordingly, they are usually analyzed separately. We argue in this paper that these activities can contribute to answering the same questions by playing the same epistemic role when they are used to unfold the content of a well-described scenario. We emphasize that in such cases, these three activities can be described by means of the same conceptual framework—even (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • What good are abstract and what-if models? Lessons from the Gaïa hypothesis.Sébastien Dutreuil - 2014 - History and Philosophy of the Life Sciences 36 (1):16-41.
    This article on the epistemology of computational models stems from an analysis of the Gaia hypothesis (GH). It begins with James Kirchner’s criticisms of the central computational model of GH: Daisyworld. Among other things, the model has been criticized for being too abstract, describing fictional entities (fictive daisies on an imaginary planet) and trying to answer counterfactual (what-if) questions (how would a planet look like if life had no influence on it?). For these reasons the model has been considered not (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Michael Ruse, The Gaïa hypothesis: science on a pagan planet: University of Chicago Press, Chicago, 2013, 272 pp, $26.00. [REVIEW]Sébastien Dutreuil - 2014 - History and Philosophy of the Life Sciences 36 (1):149-151.
    This article on the epistemology of computational models stems from an analysis of the Gaïa hypothesis. It begins with James Kirchner’s criticisms of the central computational model of GH: Daisyworld. Among other things, the model has been criticized for being too abstract, describing fictional entities and trying to answer counterfactual questions. For these reasons the model has been considered not testable and therefore not legitimate in science, and in any case not very interesting since it explores non actual issues. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is a Simulation Model?Juan M. Durán - 2020 - Minds and Machines 30 (3):301-323.
    Many philosophical accounts of scientific models fail to distinguish between a simulation model and other forms of models. This failure is unfortunate because there are important differences pertaining to their methodology and epistemology that favor their philosophical understanding. The core claim presented here is that simulation models are rich and complex units of analysis in their own right, that they depart from known forms of scientific models in significant ways, and that a proper understanding of the type of model simulations (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Varying the Explanatory Span: Scientific Explanation for Computer Simulations.Juan Manuel Durán - 2017 - International Studies in the Philosophy of Science 31 (1):27-45.
    This article aims to develop a new account of scientific explanation for computer simulations. To this end, two questions are answered: what is the explanatory relation for computer simulations? And what kind of epistemic gain should be expected? For several reasons tailored to the benefits and needs of computer simulations, these questions are better answered within the unificationist model of scientific explanation. Unlike previous efforts in the literature, I submit that the explanatory relation is between the simulation model and the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Simulaciones computacionales: un análisis de dos concepciones antagónicas.Juan Manuel Duran - 2017 - Principia: An International Journal of Epistemology (April):125-140.
    Download  
     
    Export citation  
     
    Bookmark  
  • Grounds for Trust: Essential Epistemic Opacity and Computational Reliabilism.Juan M. Durán & Nico Formanek - 2018 - Minds and Machines 28 (4):645-666.
    Several philosophical issues in connection with computer simulations rely on the assumption that results of simulations are trustworthy. Examples of these include the debate on the experimental role of computer simulations :483–496, 2009; Morrison in Philos Stud 143:33–57, 2009), the nature of computer data Computer simulations and the changing face of scientific experimentation, Cambridge Scholars Publishing, Barcelona, 2013; Humphreys, in: Durán, Arnold Computer simulations and the changing face of scientific experimentation, Cambridge Scholars Publishing, Barcelona, 2013), and the explanatory power of (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • A Formal Framework for Computer Simulations: Surveying the Historical Record and Finding Their Philosophical Roots.Juan M. Durán - 2019 - Philosophy and Technology 34 (1):105-127.
    A chronicled approach to the notion of computer simulations shows that there are two predominant interpretations in the specialized literature. According to the first interpretation, computer simulations are techniques for finding the set of solutions to a mathematical model. I call this first interpretation the problem-solving technique viewpoint. In its second interpretation, computer simulations are considered to describe patterns of behavior of a target system. I call this second interpretation the description of patterns of behavior viewpoint of computer simulations. This (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Formal Framework for Computer Simulations: Surveying the Historical Record and Finding Their Philosophical Roots.Juan M. Durán - 2019 - Philosophy and Technology 34 (1):105-127.
    A chronicled approach to the notion of computer simulations shows that there are two predominant interpretations in the specialized literature. According to the first interpretation, computer simulations are techniques for finding the set of solutions to a mathematical model. I call this first interpretation the problem-solving technique viewpoint. In its second interpretation, computer simulations are considered to describe patterns of behavior of a target system. I call this second interpretation the description of patterns of behavior viewpoint of computer simulations. This (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations