Switch to: Citations

Add references

You must login to add references.
  1. A Parting of the Ways: Carnap, Cassirer, and Heidegger.Michael Friedman - 2000 - Open Court Publishing.
    In this insightful study of the common origins of analytic and continental philosophy, Friedman looks at how social and political events intertwined and influenced philosophy during the early twentieth century, ultimately giving rise to the two very different schools of thought. He shows how these two approaches, now practiced largely in isolation from one another, were once opposing tendencies within a common discussion. Already polarized by their philosophical disagreements, these approaches were further split apart by the rise of Naziism and (...)
    Download  
     
    Export citation  
     
    Bookmark   155 citations  
  • Frege, Dedekind, and the philosophy of mathematics.Philip Kitcher - 1986 - In Leila Haaparanta & Jaakko Hintikka (eds.), Frege Synthesized: Essays on the Philosophical and Foundational Work of Gottlob Frege. Dordrecht, Netherland: Kluwer Academic Publishers. pp. 299--343.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Identity Problem for Realist Structuralism.J. Keranen - 2001 - Philosophia Mathematica 9 (3):308--330.
    According to realist structuralism, mathematical objects are places in abstract structures. We argue that in spite of its many attractions, realist structuralism must be rejected. For, first, mathematical structures typically contain intra-structurally indiscernible places. Second, any account of place-identity available to the realist structuralist entails that intra-structurally indiscernible places are identical. Since for her mathematical singular terms denote places in structures, she would have to say, for example, that 1 = − 1 in the group (Z, +). We call this (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Mathematics Without Numbers: Towards a Modal-Structural Interpretation.Geoffrey Hellman - 1989 - Oxford, England: Oxford University Press.
    Develops a structuralist understanding of mathematics, as an alternative to set- or type-theoretic foundations, that respects classical mathematical truth while ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  • Three varieties of mathematical structuralism.Geoffrey Hellman - 2001 - Philosophia Mathematica 9 (2):184-211.
    Three principal varieties of mathematical structuralism are compared: set-theoretic structuralism (‘STS’) using model theory, Shapiro's ante rem structuralism invoking sui generis universals (‘SGS’), and the author's modal-structuralism (‘MS’) invoking logical possibility. Several problems affecting STS are discussed concerning, e.g., multiplicity of universes. SGS overcomes these; but it faces further problems of its own, concerning, e.g., the very intelligibility of purely structural objects and relations. MS, in contrast, overcomes or avoids both sets of problems. Finally, it is argued that the modality (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 1997 - Oxford, England: Oxford University Press USA.
    Moving beyond both realist and anti-realist accounts of mathematics, Shapiro articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • Substanzbegriff und Funktionsbegriff: Untersuchungen Über die Grundfragen der Erkenntniskritik (Classic Reprint).Ernst Cassirer (ed.) - 2017 - Forgotten Books.
    Excerpt from Substanzbegriff und Funktionsbegriff: Untersuchungen Uber die Grundfragen der Erkenntniskritik Die erste Anregung zu den Untersuchungen, die dieser Band enthalt, ist mir aus Studien zur Philosophie der Mathe matik erwachsen. Indem ich versuchte, von Seiten der Logik aus einen Zugang zu den Grundbegriffen der Mathematik zu gewinnen, erwies es sich vor allem als notwendig, die B e g r i f f s f u n k t i 0 n e'lhsimaher zu zergliedern und auf ihre Voraussetzungen zuruckzufuhren. Hier (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • The structuralist view of mathematical objects.Charles Parsons - 1990 - Synthese 84 (3):303 - 346.
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   587 citations  
  • (1 other version)Psychologism: The Sociology of Philosophical Knowledge.Martin Kusch - 1995 - New York: Routledge.
    First published in 1995. Routledge is an imprint of Taylor & Francis, an informa company.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Truth and proof: The platonism of mathematics.W. W. Tait - 1986 - Synthese 69 (3):341 - 370.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Abstract.[author unknown] - 1998 - Studies in History and Philosophy of Science Part A 29 (2):299-303.
    Download  
     
    Export citation  
     
    Bookmark   198 citations  
  • Was Sind und was Sollen Die Zahlen?Richard Dedekind - 1888 - Cambridge University Press.
    This influential 1888 publication explained the real numbers, and their construction and properties, from first principles.
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • (1 other version)Philosophy of Mathematics.Stewart Shapiro - 2003 - In Peter Clark & Katherine Hawley (eds.), Philosophy of science today. New York: Oxford University Press.
    Moving beyond both realist and anti-realist accounts of mathematics, Shapiro articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Mathematische Existenz und Widerspruchsfreiheit.Paul Bernays - 1957 - Journal of Symbolic Logic 22 (2):210-211.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    Steve Awodey and Erich H. Reck. Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Abstract.[author unknown] - 2011 - Dialogue and Universalism 21 (4):447-449.
    Download  
     
    Export citation  
     
    Bookmark   224 citations