Switch to: References

Add citations

You must login to add citations.
  1. Presences of the Infinite: J.M. Coetzee and Mathematics.Peter Johnston - 2013 - Dissertation, Royal Holloway, University of London
    This thesis articulates the resonances between J. M. Coetzee's lifelong engagement with mathematics and his practice as a novelist, critic, and poet. Though the critical discourse surrounding Coetzee's literary work continues to flourish, and though the basic details of his background in mathematics are now widely acknowledged, his inheritance from that background has not yet been the subject of a comprehensive and mathematically- literate account. In providing such an account, I propose that these two strands of his intellectual trajectory not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Plato's Problem: An Introduction to Mathematical Platonism.Marco Panza & Andrea Sereni - 2013 - New York: Palgrave-Macmillan. Edited by Andrea Sereni & Marco Panza.
    What is mathematics about? And if it is about some sort of mathematical reality, how can we have access to it? This is the problem raised by Plato, which still today is the subject of lively philosophical disputes. This book traces the history of the problem, from its origins to its contemporary treatment. It discusses the answers given by Aristotle, Proclus and Kant, through Frege's and Russell's versions of logicism, Hilbert's formalism, Gödel's platonism, up to the the current debate on (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Philosophy of mathematics: Making a fresh start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Extending Hartry field's instrumental account of applied mathematics to statistical mechanics.Glen Meyer - 2009 - Philosophia Mathematica 17 (3):273-312.
    A serious flaw in Hartry Field’s instrumental account of applied mathematics, namely that Field must overestimate the extent to which many of the structures of our mathematical theories are reflected in the physical world, underlies much of the criticism of this account. After reviewing some of this criticism, I illustrate through an examination of the prospects for extending Field’s account to classical equilibrium statistical mechanics how this flaw will prevent any significant extension of this account beyond field theories. I note (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (2 other versions)Nominalism.Zoltan Szabo - 2003 - In Michael J. Loux & Dean W. Zimmerman (eds.), The Oxford handbook of metaphysics. New York: Oxford University Press.
    …entities? 2. How to be a nominalist 2.1. “Speak with the vulgar …” 2.2. “…think with the learned” 3. Arguments for nominalism 3.1. Intelligibility, physicalism, and economy 3.2. Causal..
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Survey article. Listening to fictions: A study of fieldian nominalism.Fraser MacBride - 1999 - British Journal for the Philosophy of Science 50 (3):431-455.
    One cannot escape the feeling that these mathematical formulae have an independent existence and an intelligence of their own, that they are wiser than we are, wiser even than their discoverers.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Role for Mathematics in the Physical Sciences.Chris Pincock - 2007 - Noûs 41 (2):253-275.
    Conflicting accounts of the role of mathematics in our physical theories can be traced to two principles. Mathematics appears to be both (1) theoretically indispensable, as we have no acceptable non-mathematical versions of our theories, and (2) metaphysically dispensable, as mathematical entities, if they existed, would lack a relevant causal role in the physical world. I offer a new account of a role for mathematics in the physical sciences that emphasizes the epistemic benefits of having mathematics around when we do (...)
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • (1 other version)Pythagorean powers or a challenge to platonism.Colin Cheyne & Charles R. Pigden - 1996 - Australasian Journal of Philosophy 74 (4):639 – 645.
    The Quine/Putnam indispensability argument is regarded by many as the chief argument for the existence of platonic objects. We argue that this argument cannot establish what its proponents intend. The form of our argument is simple. Suppose indispensability to science is the only good reason for believing in the existence of platonic objects. Either the dispensability of mathematical objects to science can be demonstrated and, hence, there is no good reason for believing in the existence of platonic objects, or their (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Indispensabilité et réalisme restreint : réponse à Nicolas Pain.Fabrice Pataut - 2012 - RÉPHA, revue étudiante de philosophie analytique 6:33-38.
    Download  
     
    Export citation  
     
    Bookmark  
  • Safety first: making property talk safe for nominalists.Jack Himelright - 2022 - Synthese 200 (3):1-26.
    Nominalists are confronted with a grave difficulty: if abstract objects do not exist, what explains the success of theories that invoke them? In this paper, I make headway on this problem. I develop a formal language in which certain platonistic claims about properties and certain nominalistic claims can be expressed, develop a formal language in which only certain nominalistic claims can be expressed, describe a function mapping sentences of the first language to sentences of the second language, and prove some (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematics and Metaphilosophy.Justin Clarke-Doane - 2022 - Cambridge: Cambridge University Press.
    This book discusses the problem of mathematical knowledge, and its broader philosophical ramifications. It argues that the problem of explaining the (defeasible) justification of our mathematical beliefs (‘the justificatory challenge’), arises insofar as disagreement over axioms bottoms out in disagreement over intuitions. And it argues that the problem of explaining their reliability (‘the reliability challenge’), arises to the extent that we could have easily had different beliefs. The book shows that mathematical facts are not, in general, empirically accessible, contra Quine, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Unifying the Philosophy of Truth.Theodora Achourioti, Henri Galinon, José Martínez Fernández & Kentaro Fujimoto (eds.) - 2015 - Dordrecht, Netherland: Springer.
    This anthology of the very latest research on truth features the work of recognized luminaries in the field, put together following a rigorous refereeing process. Along with an introduction outlining the central issues in the field, it provides a unique and unrivaled view of contemporary work on the nature of truth, with papers selected from key conferences in 2011 such as Truth Be Told, Truth at Work, Paradoxes of Truth and Denotation and Axiomatic Theories of Truth. Studying the nature of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reason, causation and compatibility with the phenomena.Basil Evangelidis - 2019 - Wilmington, Delaware, USA: Vernon Press.
    'Reason, Causation and Compatibility with the Phenomena' strives to give answers to the philosophical problem of the interplay between realism, explanation and experience. This book is a compilation of essays that recollect significant conceptions of rival terms such as determinism and freedom, reason and appearance, power and knowledge. This title discusses the progress made in epistemology and natural philosophy, especially the steps that led from the ancient theory of atomism to the modern quantum theory, and from mathematization to analytic philosophy. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Infinity and the foundations of linguistics.Ryan M. Nefdt - 2019 - Synthese 196 (5):1671-1711.
    The concept of linguistic infinity has had a central role to play in foundational debates within theoretical linguistics since its more formal inception in the mid-twentieth century. The conceptualist tradition, marshalled in by Chomsky and others, holds that infinity is a core explanandum and a link to the formal sciences. Realism/Platonism takes this further to argue that linguistics is in fact a formal science with an abstract ontology. In this paper, I argue that a central misconstrual of formal apparatus of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • From Mathematical Fictionalism to Truth‐Theoretic Fictionalism.Bradley Armour-Garb & James A. Woodbridge - 2014 - Philosophy and Phenomenological Research 88 (1):93-118.
    We argue that if Stephen Yablo (2005) is right that philosophers of mathematics ought to endorse a fictionalist view of number-talk, then there is a compelling reason for deflationists about truth to endorse a fictionalist view of truth-talk. More specifically, our claim will be that, for deflationists about truth, Yablo’s argument for mathematical fictionalism can be employed and mounted as an argument for truth-theoretic fictionalism.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Comments on “Parsimony and inference to the best mathematical explanation”.Fabrice Pataut - 2016 - Synthese 193 (2):351-363.
    The author of “Parsimony and inference to the best mathematical explanation” argues for platonism by way of an enhanced indispensability argument based on an inference to yet better mathematical optimization explanations in the natural sciences. Since such explanations yield beneficial trade-offs between stronger mathematical existential claims and fewer concrete ontological commitments than those involved in merely good mathematical explanations, one must countenance the mathematical objects that play a theoretical role in them via an application of the relevant mathematical results. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Grounding and the indispensability argument.David Liggins - 2016 - Synthese 193 (2):531-548.
    There has been much discussion of the indispensability argument for the existence of mathematical objects. In this paper I reconsider the debate by using the notion of grounding, or non-causal dependence. First of all, I investigate what proponents of the indispensability argument should say about the grounding of relations between physical objects and mathematical ones. This reveals some resources which nominalists are entitled to use. Making use of these resources, I present a neglected but promising response to the indispensability argument—a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Does The Necessity of Mathematical Truths Imply Their Apriority?Mark McEvoy - 2013 - Pacific Philosophical Quarterly 94 (4):431-445.
    It is sometimes argued that mathematical knowledge must be a priori, since mathematical truths are necessary, and experience tells us only what is true, not what must be true. This argument can be undermined either by showing that experience can yield knowledge of the necessity of some truths, or by arguing that mathematical theorems are contingent. Recent work by Albert Casullo and Timothy Williamson argues (or can be used to argue) the first of these lines; W. V. Quine and Hartry (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Truthmaker Indispensability Argument.Sam Baron - 2013 - Synthese 190 (12):2413-2427.
    Recently, nominalists have made a case against the Quine–Putnam indispensability argument for mathematical Platonism by taking issue with Quine’s criterion of ontological commitment. In this paper I propose and defend an indispensability argument founded on an alternative criterion of ontological commitment: that advocated by David Armstrong. By defending such an argument I place the burden back onto the nominalist to defend her favourite criterion of ontological commitment and, furthermore, show that criterion cannot be used to formulate a plausible form of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Against Parthood.Theodore Sider - 2013 - Oxford Studies in Metaphysics 8:237–293.
    Mereological nihilism says that there do not exist (in the fundamental sense) any objects with proper parts. A reason to accept it is that we can thereby eliminate 'part' from fundamental ideology. Many purported reasons to reject it - based on common sense, perception, and the possibility of gunk, for example - are weak. A more powerful reason is that composite objects seem needed for spacetime physics; but sets suffice instead.
    Download  
     
    Export citation  
     
    Bookmark   201 citations  
  • Ontology and logic: remarks on hartry field's anti-platonist philosophy of mathematics.Michael D. Resnik - 1985 - History and Philosophy of Logic 6 (1):191-209.
    In Science without numbers Hartry Field attempted to formulate a nominalist version of Newtonian physics?one free of ontic commitment to numbers, functions or sets?sufficiently strong to have the standard platonist version as a conservative extension. However, when uses for abstract entities kept popping up like hydra heads, Field enriched his logic to avoid them. This paper reviews some of Field's attempts to deflate his ontology by inflating his logic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical nominalism and measurement.Davide Rizza - 2010 - Philosophia Mathematica 18 (1):53-73.
    In this paper I defend mathematical nominalism by arguing that any reasonable account of scientific theories and scientific practice must make explicit the empirical non-mathematical grounds on which the application of mathematics is based. Once this is done, references to mathematical entities may be eliminated or explained away in terms of underlying empirical conditions. I provide evidence for this conclusion by presenting a detailed study of the applicability of mathematics to measurement. This study shows that mathematical nominalism may be regarded (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fictionalism in the philosophy of mathematics.Mark Balaguer - 2008 - Stanford Encyclopedia of Philosophy.
    Mathematical fictionalism (or as I'll call it, fictionalism) is best thought of as a reaction to mathematical platonism. Platonism is the view that (a) there exist abstract mathematical objects (i.e., nonspatiotemporal mathematical objects), and (b) our mathematical sentences and theories provide true descriptions of such objects. So, for instance, on the platonist view, the sentence ‘3 is prime’ provides a straightforward description of a certain object—namely, the number 3—in much the same way that the sentence ‘Mars is red’ provides a (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Platonism in metaphysics.Mark Balaguer - 2008 - Stanford Encyclopedia of Philosophy.
    Platonism is the view that there exist such things as abstract objects — where an abstract object is an object that does not exist in space or time and which is therefore entirely non-physical and nonmental. Platonism in this sense is a contemporary view. It is obviously related to the views of Plato in important ways, but it is not entirely clear that Plato endorsed this view, as it is defined here. In order to remain neutral on this question, the (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Quantifying over the reals.Philip Hugly & Charles Sayward - 1994 - Synthese 101 (1):53 - 64.
    Peter Geach proposed a substitutional construal of quantification over thirty years ago. It is not standardly substitutional since it is not tied to those substitution instances currently available to us; rather, it is pegged to possible substitution instances. We argue that (i) quantification over the real numbers can be construed substitutionally following Geach's idea; (ii) a price to be paid, if it is that, is intuitionism; (iii) quantification, thus conceived, does not in itself relieve us of ontological commitment to real (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematics and reality.Stewart Shapiro - 1983 - Philosophy of Science 50 (4):523-548.
    The subject of this paper is the philosophical problem of accounting for the relationship between mathematics and non-mathematical reality. The first section, devoted to the importance of the problem, suggests that many of the reasons for engaging in philosophy at all make an account of the relationship between mathematics and reality a priority, not only in philosophy of mathematics and philosophy of science, but also in general epistemology/metaphysics. This is followed by a (rather brief) survey of the major, traditional philosophies (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • (1 other version)Platonism in Metaphysics.Markn D. Balaguer - 2016 - Stanford Encyclopedia of Philosophy 1 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Actuality and Essence.William G. Lycan & Stewart Shapiro - 1986 - Midwest Studies in Philosophy 11 (1):343-377.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Book Review. [REVIEW][author unknown] - 2005 - History and Philosophy of Logic 26 (4):369-371.
    T. Franzén, Gödel's theorem. An incomplete guide to its use and abuse. Wellesley, MA: A. K. Peters, 2005. x + 172 pp. $24.95. ISBN 1-56881-238-8. Reviewed by R. Zach, Department of Philosophy, Univ...
    Download  
     
    Export citation  
     
    Bookmark  
  • Hartry Field. Science Without Numbers: A Defense of Nominalism 2nd ed. [REVIEW]Geoffrey Hellman & Mary Leng - 2019 - Philosophia Mathematica 27 (1):139-148.
    FieldHartry. Science Without Numbers: A Defense of Nominalism 2nd ed.Oxford University Press, 2016. ISBN 978-0-19-877792-2. Pp. vi + 56 + vi + 111.
    Download  
     
    Export citation  
     
    Bookmark  
  • Social Construction in the Philosophy of Mathematics: A Critical Evaluation of Julian Cole’s Theory†: Articles.J. M. Dieterle - 2010 - Philosophia Mathematica 18 (3):311-328.
    Julian Cole argues that mathematical domains are the products of social construction. This view has an initial appeal in that it seems to salvage much that is good about traditional platonistic realism without taking on the ontological baggage. However, it also has problems. After a brief sketch of social constructivist theories and Cole’s philosophy of mathematics, I evaluate the arguments in favor of social constructivism. I also discuss two substantial problems with the theory. I argue that unless and until social (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Field's programme: some interference.Joseph Melia - 1998 - Analysis 58 (2):63-71.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Truth, Pretense and the Liar Paradox.Bradley Armour-Garb & James A. Woodbridge - 2015 - In T. Achourioti, H. Galinon, J. Martínez Fernández & K. Fujimoto (eds.), Unifying the Philosophy of Truth. Dordrecht: Imprint: Springer. pp. 339-354.
    In this paper we explain our pretense account of truth-talk and apply it in a diagnosis and treatment of the Liar Paradox. We begin by assuming that some form of deflationism is the correct approach to the topic of truth. We then briefly motivate the idea that all T-deflationists should endorse a fictionalist view of truth-talk, and, after distinguishing pretense-involving fictionalism (PIF) from error- theoretic fictionalism (ETF), explain the merits of the former over the latter. After presenting the basic framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ficcionalismo matemático y si-entoncismo russelliano¿ dos caras de la misma moneda?Wilfredo Quezada Pulido - 2004 - Revista de Filosofía (Madrid) 29 (2):73-97.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fictionalism in Metaphysics.Frederick Kroon - 2011 - Philosophy Compass 6 (11):786-803.
    This is a survey of contemporary work on ‘fictionalism in metaphysics’, a term that is taken to signify both the place of fictionalism as a distinctive anti‐realist metaphysics in which usefulness rather than truth is the norm of acceptance, and the fact that philosophers have given fictionalist treatments of a range of specifically metaphysical notions.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Indispensability arguments in the philosophy of mathematics.Mark Colyvan - 2008 - Stanford Encyclopedia of Philosophy.
    One of the most intriguing features of mathematics is its applicability to empirical science. Every branch of science draws upon large and often diverse portions of mathematics, from the use of Hilbert spaces in quantum mechanics to the use of differential geometry in general relativity. It's not just the physical sciences that avail themselves of the services of mathematics either. Biology, for instance, makes extensive use of difference equations and statistics. The roles mathematics plays in these theories is also varied. (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • How nominalist is Hartry field's nominalism?Michael D. Resnik - 1985 - Philosophical Studies 47 (2):163 - 181.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Apriority, Necessity and the Subordinate Role of Empirical Warrant in Mathematical Knowledge.Mark McEvoy - 2018 - Theoria 84 (2):157-178.
    In this article, I present a novel account of a priori warrant, which I then use to examine the relationship between a priori and a posteriori warrant in mathematics. According to this account of a priori warrant, the reason that a posteriori warrant is subordinate to a priori warrant in mathematics is because processes that produce a priori warrant are reliable independent of the contexts in which they are used, whereas this is not true for processes that produce a posteriori (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical Consequence for Nominalists.Marcus Rossberg & Daniel Cohnitz - 2009 - Theoria 24 (2):147-168.
    It is often claimed that nominalistic programmes to reconstruct mathematics fail, since they will at some point involve the notion of logical consequence which is unavailable to the nominalist. In this paper we use an idea of Goodman and Quine to develop a nominalistically acceptable explication of logical consequence.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Filosofía de las matemáticas, teoría de cardinales grandes y sus bases cognitivas.Wilfredo Quezada - 2017 - Revista de Filosofía 73:281-297.
    En este artículo se examinan algunas implicaciones del naturalismo matemático de P. Maddy como una concepción filosófica que permite superar las dificultades del ficcionalismo y el realismo fisicalista en matemáticas. Aparte de esto, la mayor virtud de tal concepción parece ser que resuelve el problema que plantea para la aplicabilidad de la matemática el no asumir la tesis de indispensabilidad de Quine sin comprometerse con su holismo confirmacional. A continuación, sobre la base de dificultades intrínsecas al programa de Maddy, exploramos (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fictionalism, theft, and the story of mathematics.Mark Balaguer - 2009 - Philosophia Mathematica 17 (2):131-162.
    This paper develops a novel version of mathematical fictionalism and defends it against three objections or worries, viz., (i) an objection based on the fact that there are obvious disanalogies between mathematics and fiction; (ii) a worry about whether fictionalism is consistent with the fact that certain mathematical sentences are objectively correct whereas others are incorrect; and (iii) a recent objection due to John Burgess concerning “hermeneuticism” and “revolutionism”.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Intrinsic Explanation and Field’s Dispensabilist Strategy.Russell Marcus - 2013 - International Journal of Philosophical Studies 21 (2):163-183.
    Philosophy of mathematics for the last half-century has been dominated in one way or another by Quine’s indispensability argument. The argument alleges that our best scientific theory quantifies over, and thus commits us to, mathematical objects. In this paper, I present new considerations which undermine the most serious challenge to Quine’s argument, Hartry Field’s reformulation of Newtonian Gravitational Theory.
    Download  
     
    Export citation  
     
    Bookmark  
  • A revenge-immune solution to the semantic paradoxes.Hartry Field - 2003 - Journal of Philosophical Logic 32 (2):139-177.
    The paper offers a solution to the semantic paradoxes, one in which (1) we keep the unrestricted truth schema “True(A)↔A”, and (2) the object language can include its own metalanguage. Because of the first feature, classical logic must be restricted, but full classical reasoning applies in “ordinary” contexts, including standard set theory. The more general logic that replaces classical logic includes a principle of substitutivity of equivalents, which with the truth schema leads to the general intersubstitutivity of True(A) with A (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • (1 other version)The roots of contemporary Platonism.Penelope Maddy - 1989 - Journal of Symbolic Logic 54 (4):1121-1144.
    Though many working mathematicians embrace a rough and ready form of Platonism, that venerable position has suffered a checkered philosophical career. Indeed the three schools of thought with which most of us began our official philosophizing about mathematics—Intuitionism, Formalism, and Logicism—all stand in fundamental disagreement with Platonism. Nevertheless, various versions of Platonistic thinking survive in contemporary philosophical circles. The aim of this paper is to describe these views, and, as my title suggests, to trace their roots.I'll begin with some preliminary (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Unrevisability.Christopher S. Hill - 2019 - Synthese 198 (4):3015-3031.
    Opposing Quine, I defend the view that some of the statements we accept are immune to empirical revision. My examples include instances of Schema and abbreviative definitions. I argue that it serves important cognitive purposes to hold statements of these kinds immune to revision, and that it is epistemically permissible for us to do so. At the end, I briefly consider the question of whether the rationale for these claims might be extended to show that additional statements are unrevisable.
    Download  
     
    Export citation  
     
    Bookmark  
  • Fictionalism and the Problem of Universals in the Philosophy of Mathematics.Strahinja Đorđević - 2018 - Filozofija I Društvo 29 (3):415-428.
    Many long-standing problems pertaining to contemporary philosophy of mathematics can be traced back to different approaches in determining the nature of mathematical entities which have been dominated by the debate between realists and nominalists. Through this discussion conceptualism is represented as a middle solution. However, it seems that until the 20th century there was no third position that would not necessitate any reliance on one of the two points of view. Fictionalism, on the other hand, observes mathematical entities in a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical fictionalism.David Papineau - 1988 - International Studies in the Philosophy of Science 2 (2):151 – 174.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Synthetic mechanics.John P. Burgess - 1984 - Journal of Philosophical Logic 13 (4):379 - 395.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The conservativeness of mathematics.J. Melia - 2006 - Analysis 66 (3):202-208.
    Download  
     
    Export citation  
     
    Bookmark   9 citations