Switch to: References

Add citations

You must login to add citations.
  1. Ontologies as Integrative Tools for Plant Science.Ramona Walls, Balaji Athreya, Laurel Cooper, Justin Elser, Maria A. Gandolfo, Pankaj Jaiswal, Christopher J. Mungall, Justin Preece, Stefan Rensing, Barry Smith & Dennis W. Stevenson - 2012 - American Journal of Botany 99 (8):1263–1275.
    Bio-ontologies are essential tools for accessing and analyzing the rapidly growing pool of plant genomic and phenomic data. Ontologies provide structured vocabularies to support consistent aggregation of data and a semantic framework for automated analyses and reasoning. They are a key component of the Semantic Web. This paper provides background on what bio-ontologies are, why they are relevant to botany, and the principles of ontology development. It includes an overview of ontologies and related resources that are relevant to plant science, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Publications by Barry Smith.Barry Smith - 2017 - Cosmos + Taxis 4 (4):67-104.
    Download  
     
    Export citation  
     
    Bookmark  
  • Barry Smith an sich.Gerald J. Erion & Gloria Zúñiga Y. Postigo (eds.) - 2017 - Cosmos + Taxis.
    Festschrift in Honor of Barry Smith on the occasion of his 65th Birthday. Published as issue 4:4 of the journal Cosmos + Taxis: Studies in Emergent Order and Organization. Includes contributions by Wolfgang Grassl, Nicola Guarino, John T. Kearns, Rudolf Lüthe, Luc Schneider, Peter Simons, Wojciech Żełaniec, and Jan Woleński.
    Download  
     
    Export citation  
     
    Bookmark  
  • Toll-like receptor signaling in vertebrates: Testing the integration of protein, complex, and pathway data in the Protein Ontology framework.Cecilia Arighi, Veronica Shamovsky, Anna Maria Masci, Alan Ruttenberg, Barry Smith, Darren Natale, Cathy Wu & Peter D’Eustachio - 2015 - PLoS ONE 10 (4):e0122978.
    The Protein Ontology provides terms for and supports annotation of species-specific protein complexes in an ontology framework that relates them both to their components and to species-independent families of complexes. Comprehensive curation of experimentally known forms and annotations thereof is expected to expose discrepancies, differences, and gaps in our knowledge. We have annotated the early events of innate immune signaling mediated by Toll-Like Receptor 3 and 4 complexes in human, mouse, and chicken. The resulting ontology and annotation data set has (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Bioinformatics advances in saliva diagnostics.Ji-Ye Ai, Barry Smith & David T. W. Wong - 2012 - International Journal of Oral Science 4 (2):85--87.
    There is a need recognized by the National Institute of Dental & Craniofacial Research and the National Cancer Institute to advance basic, translational and clinical saliva research. The goal of the Salivaomics Knowledge Base (SKB) is to create a data management system and web resource constructed to support human salivaomics research. To maximize the utility of the SKB for retrieval, integration and analysis of data, we have developed the Saliva Ontology and SDxMart. This article reviews the informatics advances in saliva (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The representation of protein complexes in the Protein Ontology.Carol Bult, Harold Drabkin, Alexei Evsikov, Darren Natale, Cecilia Arighi, Natalia Roberts, Alan Ruttenberg, Peter D’Eustachio, Barry Smith, Judith Blake & Cathy Wu - 2011 - BMC Bioinformatics 12 (371):1-11.
    Representing species-specific proteins and protein complexes in ontologies that are both human and machine-readable facilitates the retrieval, analysis, and interpretation of genome-scale data sets. Although existing protin-centric informatics resources provide the biomedical research community with well-curated compendia of protein sequence and structure, these resources lack formal ontological representations of the relationships among the proteins themselves. The Protein Ontology (PRO) Consortium is filling this informatics resource gap by developing ontological representations and relationships among proteins and their variants and modified forms. Because (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An improved ontological representation of dendritic cells as a paradigm for all cell types.Anna Maria Masci, Cecilia N. Arighi, Alexander D. Diehl, Anne E. Liebermann, Chris Mungall, Richard H. Scheuermann, Barry Smith & Lindsay Cowell - 2009 - BMC Bioinformatics 10 (1):70.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Saliva Ontology: An ontology-based framework for a Salivaomics Knowledge Base.Jiye Ai, Barry Smith & David Wong - 2010 - BMC Bioinformatics 11 (1):302.
    The Salivaomics Knowledge Base (SKB) is designed to serve as a computational infrastructure that can permit global exploration and utilization of data and information relevant to salivaomics. SKB is created by aligning (1) the saliva biomarker discovery and validation resources at UCLA with (2) the ontology resources developed by the OBO (Open Biomedical Ontologies) Foundry, including a new Saliva Ontology (SALO). We define the Saliva Ontology (SALO; http://www.skb.ucla.edu/SALO/) as a consensus-based controlled vocabulary of terms and relations dedicated to the salivaomics (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • TGF-beta signaling proteins and the Protein Ontology.Arighi Cecilia, Liu Hongfang, Natale Darren, Barker Winona, Drabkin Harold, Blake Judith, Barry Smith & Wu Cathy - 2009 - BMC Bioinformatics 10 (Suppl 5):S3.
    The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or posttranslational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. PRO provides a framework (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • FueL: Representing function structure and function dependencies with a UML profile for function modeling.Patryk Burek, Frank Loebe & Heinrich Herre - 2016 - Applied ontology 11 (2):155-203.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Infectious Disease Ontology.Lindsay Grey Cowell & Barry Smith - 2009 - In Lindsay Grey Cowell & Barry Smith (eds.), Infectious Disease Ontology. New York: Springer New York. pp. 373--395.
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Overcoming the ontology enrichment bottleneck with quick term templates.Philippe Rocca-Serra, Alan Ruttenberg, Martin J. O'Connor, Patricia L. Whetzel, Daniel Schober, Jay Greenbaum, Mélanie Courtot, Ryan R. Brinkman, Susanna Assunta Sansone & Richard Scheuermann - 2011 - Applied ontology 6 (1):13-22.
    Download  
     
    Export citation  
     
    Bookmark