Switch to: References

Add citations

You must login to add citations.
  1. On Frege's Alleged Indispensability Argument.Pieranna Garavaso - 2005 - Philosophia Mathematica 13 (2):160-173.
    The expression ‘indispensability argument’ denotes a family of arguments for mathematical realism supported among others by Quine and Putnam. More and more often, Gottlob Frege is credited with being the first to state this argument in section 91 of the _Grundgesetze der Arithmetik_. Frege's alleged indispensability argument is the subject of this essay. On the basis of three significant differences between Mark Colyvan's indispensability arguments and Frege's applicability argument, I deny that Frege presents an indispensability argument in that very often (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Applying mathematics to empirical sciences: flashback to a puzzling disciplinary interaction.Raphaël Sandoz - 2018 - Synthese 195 (2):875-898.
    This paper aims to reassess the philosophical puzzle of the “applicability of mathematics to physical sciences” as a misunderstood disciplinary interplay. If the border isolating mathematics from the empirical world is based on appropriate criteria, how does one explain the fruitfulness of its systematic crossings in recent centuries? An analysis of the evolution of the criteria used to separate mathematics from experimental sciences will shed some light on this question. In this respect, we will highlight the historical influence of three (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Avoiding reification: Heuristic effectiveness of mathematics and the prediction of the omega minus particle.Michele Ginammi - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:20-27.
    According to Steiner (1998), in contemporary physics new important discoveries are often obtained by means of strategies which rely on purely formal mathematical considerations. In such discoveries, mathematics seems to have a peculiar and controversial role, which apparently cannot be accounted for by means of standard methodological criteria. M. Gell-Mann and Y. Ne׳eman׳s prediction of the Ω− particle is usually considered a typical example of application of this kind of strategy. According to Bangu (2008), this prediction is apparently based on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Formalizing Darwinism, Naturalizing Mathematics.Fabio Sterpetti - 2015 - Paradigmi. Rivista di Critica Filosofica 33 (2):133-160.
    In the last decades two different and apparently unrelated lines of research have increasingly connected mathematics and evolutionism. Indeed, on the one hand different attempts to formalize darwinism have been made, while, on the other hand, different attempts to naturalize logic and mathematics have been put forward. Those researches may appear either to be completely distinct or at least in some way convergent. They may in fact both be seen as supporting a naturalistic stance. Evolutionism is indeed crucial for a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Outline of a dynamical inferential conception of the application of mathematics.Tim Räz & Tilman Sauer - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 49:57-72.
    We outline a framework for analyzing episodes from the history of science in which the application of mathematics plays a constitutive role in the conceptual development of empirical sciences. Our starting point is the inferential conception of the application of mathematics, recently advanced by Bueno and Colyvan. We identify and discuss some systematic problems of this approach. We propose refinements of the inferential conception based on theoretical considerations and on the basis of a historical case study. We demonstrate the usefulness (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Mathematical Representation of the Arrow of Time.Meir Hemmo & Orly Shenker - 2012 - Iyyun 61:167-192.
    This paper distinguishes between 3 meanings of reversal, all of which are mathematically equivalent in classical mechanics: velocity reversal, retrodiction, and time reversal. It then concludes that in order to have well defined velocities a primitive arrow of time must be included in every time slice. The paper briefly mentions that this arrow cannot come from the Second Law of thermodynamics, but this point is developed in more details elsewhere.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege, Indispensability, and the Compatibilist Heresy.Andrea Sereni - 2015 - Philosophia Mathematica 23 (1):11-30.
    In Grundgesetze, Vol. II, §91, Frege argues that ‘it is applicability alone which elevates arithmetic from a game to the rank of a science’. Many view this as an in nuce statement of the indispensability argument later championed by Quine. Garavaso has questioned this attribution. I argue that even though Frege's applicability argument is not a version of ia, it facilitates acceptance of suitable formulations of ia. The prospects for making the empiricist ia compatible with a rationalist Fregean framework appear (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Naturalizing Badiou: mathematical ontology and structural realism.Fabio Gironi - 2014 - New York: Palgrave-Macmillan.
    This thesis offers a naturalist revision of Alain Badiou’s philosophy. This goal is pursued through an encounter of Badiou’s mathematical ontology and theory of truth with contemporary trends in philosophy of mathematics and philosophy of science. I take issue with Badiou’s inability to elucidate the link between the empirical and the ontological, and his residual reliance on a Heideggerian project of fundamental ontology, which undermines his own immanentist principles. I will argue for both a bottom-up naturalisation of Badiou’s philosophical approach (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Cognitive Approach to Benacerraf's Dilemma.Luke Jerzykiewicz - 2009 - Dissertation, University of Western Ontario
    One of the important challenges in the philosophy of mathematics is to account for the semantics of sentences that express mathematical propositions while simultaneously explaining our access to their contents. This is Benacerraf’s Dilemma. In this dissertation, I argue that cognitive science furnishes new tools by means of which we can make progress on this problem. The foundation of the solution, I argue, must be an ontologically realist, albeit non-platonist, conception of mathematical reality. The semantic portion of the problem can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic or Reason?Penelope Rush - 2012 - Logic and Logical Philosophy 21 (2):127-163.
    This paper explores the question of what logic is not. It argues against the wide spread assumptions that logic is: a model of reason; a model of correct reason; the laws of thought, or indeed is related to reason at all such that the essential nature of the two are crucially or essentially co-illustrative. I note that due to such assumptions, our current understanding of the nature of logic itself is thoroughly entangled with the nature of reason. I show that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The emancipation of chemistry.Gerald F. Thomas - 2011 - Foundations of Chemistry 14 (2):109-155.
    In his classic work The Mind and its Place in Nature published in 1925 at the height of the development of quantum mechanics but several years after the chemists Lewis and Langmuir had already laid the foundations of the modern theory of valence with the introduction of the covalent bond, the analytic philosopher C. D. Broad argued for the emancipation of chemistry from the crass physicalism that led physicists then and later—with support from a rabblement of philosophers who knew as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Mathematical Model of Divine Infinity.Eric Steinhart - 2009 - Theology and Science 7 (3):261-274.
    Mathematics is obviously important in the sciences. And so it is likely to be equally important in any effort that aims to understand God in a scientifically significant way or that aims to clarify the relations between science and theology. The degree to which God has any perfection is absolutely infinite. We use contemporary mathematics to precisely define that absolute infinity. For any perfection, we use transfinite recursion to define an endlessly ascending series of degrees of that perfection. That series (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Conceptions of the continuum.Solomon Feferman - unknown
    Key words: the continuum, structuralism, conceptual structuralism, basic structural conceptions, Euclidean geometry, Hilbertian geometry, the real number system, settheoretical conceptions, phenomenological conceptions, foundational conceptions, physical conceptions.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Turing-, human- and physical computability: An unasked question. [REVIEW]Eli Dresner - 2008 - Minds and Machines 18 (3):349-355.
    In recent years it has been convincingly argued that the Church-Turing thesis concerns the bounds of human computability: The thesis was presented and justified as formally delineating the class of functions that can be computed by a human carrying out an algorithm. Thus the Thesis needs to be distinguished from the so-called Physical Church-Turing thesis, according to which all physically computable functions are Turing computable. The latter is often claimed to be false, or, if true, contingently so. On all accounts, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The galilean turn in population ecology.Mark Colyvan & Lev R. Ginzburg - 2003 - Biology and Philosophy 18 (3):401-414.
    The standard mathematical models in population ecology assume that a population's growth rate is a function of its environment. In this paper we investigate an alternative proposal according to which the rate of change of the growth rate is a function of the environment and of environmental change. We focus on the philosophical issues involved in such a fundamental shift in theoretical assumptions, as well as on the explanations the two theories offer for some of the key data such as (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Parts and theories in compositional biology.Rasmus Grønfeldt Winther - 2006 - Biology and Philosophy 21 (4):471-499.
    I analyze the importance of parts in the style of biological theorizing that I call compositional biology. I do this by investigating various aspects, including partitioning frames and explanatory accounts, of the theoretical perspectives that fall under and are guided by compositional biology. I ground this general examination in a comparative analysis of three different disciplines with their associated compositional theoretical perspectives: comparative morphology, functional morphology, and developmental biology. I glean data for this analysis from canonical textbooks and defend the (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • A new perspective on the problem of applying mathematics.Christopher Pincock - 2004 - Philosophia Mathematica 12 (2):135-161.
    This paper sets out a new framework for discussing a long-standing problem in the philosophy of mathematics, namely the connection between the physical world and a mathematical domain when the mathematics is applied in science. I argue that considering counterfactual situations raises some interesting challenges for some approaches to applications, and consider an approach that avoids these challenges.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Where have all the theories gone?Margaret Morrison - 2007 - Philosophy of Science 74 (2):195-228.
    Although the recent emphasis on models in philosophy of science has been an important development, the consequence has been a shift away from more traditional notions of theory. Because the semantic view defines theories as families of models and because much of the literature on “scientific” modeling has emphasized various degrees of independence from theory, little attention has been paid to the role that theory has in articulating scientific knowledge. This paper is the beginning of what I hope will be (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • How to apply mathematics.Ulrich Meyer - 2004 - Erkenntnis 61 (1):17-28.
    This paper presents a novel account of applied mathematics. It shows how we can distinguish the physical content from the mathematical form of a scientific theory even in cases where the mathematics applied is indispensable and cannot be eliminated by paraphrase.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is symmetry identity?Marvin Chester - 2002 - International Studies in the Philosophy of Science 16 (2):111 – 124.
    Wigner found unreasonable the "effectiveness of mathematics in the natural sciences". But if the mathematics we use to describe nature is simply a carefully coded expression of our experience then its effectiveness is quite reasonable. Its effectiveness is built into its design. We consider group theory, the logic of symmetry. We examine the premise that symmetry is identity; that group theory encodes our experience of identification. To decide whether group theory describes the world in such an elemental way we catalogue (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the heuristic power of mathematical representations.Emiliano Ippoliti - 2022 - Synthese 200 (5):1-28.
    I argue that mathematical representations can have heuristic power since their construction can be ampliative. To this end, I examine how a representation introduces elements and properties into the represented object that it does not contain at the beginning of its construction, and how it guides the manipulations of the represented object in ways that restructure its components by gradually adding new pieces of information to produce a hypothesis in order to solve a problem.In addition, I defend an ‘inferential’ approach (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Unreasonable Effectiveness of Mathematics: From Hamming to Wigner and Back Again.Arezoo Islami - 2022 - Foundations of Physics 52 (4):1-18.
    In a paper titled, “The Unreasonable Effectiveness of Mathematics”, published 20 years after Wigner’s seminal paper, the mathematician Richard W. Hamming discussed what he took to be Wigner’s problem of Unreasonable Effectiveness and offered some partial explanations for this phenomenon. Whether Hamming succeeds in his explanations as answers to Wigner’s puzzle is addressed by other scholars in recent years I, on the other hand, raise a more fundamental question: does Hamming succeed in raising the same question as Wigner? The answer (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • El Tractatus al rescate de Principia Mathematica: Ramsey y los fundamentos logicistas de las matemáticas.Emilio Méndez Pinto - 2022 - Critica 54 (161):43-69.
    Mi objetivo es discutir las principales dificultades que Frank P. Ramsey encontró en Principia Mathematica y la solución que, vía el Tractatus Logico-Philosophicus, propuso al respecto. Sostengo que las principales dificultades que Ramsey encontró en Principia Mathematica están, todas, relacionadas con que Russell y Whitehead desatendieron la forma lógica de las proposiciones matemáticas, las cuales, según Ramsey, deben ser tautológicas.
    Download  
     
    Export citation  
     
    Bookmark  
  • Russell's Unknown Logicism: A Study in the History and Philosophy of Mathematics.Sébastien Gandon - 2012 - Houndmills, England and New York: Palgrave-Macmillan.
    In this excellent book Sebastien Gandon focuses mainly on Russell's two major texts, Principa Mathematica and Principle of Mathematics, meticulously unpicking the details of these texts and bringing a new interpretation of both the mathematical and the philosophical content. Winner of The Bertrand Russell Society Book Award 2013.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Close encounters with scientific analogies of the third kind.Francesco Nappo - 2021 - European Journal for Philosophy of Science 11 (3):1-20.
    Arguments from non-causal analogy form a distinctive class of analogical arguments in science not recognized in authoritative classifications by, e.g., Hesse and Bartha. In this paper, I illustrate this novel class of scientific analogies by means of historical examples from physics, biology and economics, at the same time emphasizing their broader significance for contemporary debates in epistemology.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Applying Mathematics by Otávio Bueno and Steven French.Mark Wilson - 2020 - Philosophical Review 129 (4):670-674.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematization in Synthetic Biology: Analogies, Templates, and Fictions.Andrea Loettgers & Tarja Knuuttila - 2017 - In Martin Carrier & Johannes Lenhard (eds.), Mathematics as a Tool: Tracing New Roles of Mathematics in the Sciences. Springer Verlag.
    In his famous article “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” Eugen Wigner argues for a unique tie between mathematics and physics, invoking even religious language: “The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve”. The possible existence of such a unique match between mathematics and physics has been extensively discussed by philosophers and historians of mathematics. Whatever the merits (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is Mathematics Unreasonably Effective?Daniel Waxman - 2021 - Australasian Journal of Philosophy 99 (1):83-99.
    Many mathematicians, physicists, and philosophers have suggested that the fact that mathematics—an a priori discipline informed substantially by aesthetic considerations—can be applied to natural science is mysterious. This paper sharpens and responds to a challenge to this effect. I argue that the aesthetic considerations used to evaluate and motivate mathematics are much more closely connected with the physical world than one might presume, and (with reference to case-studies within Galois theory and probabilistic number theory) show that they are correlated with (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Dilemma for Mathematical Constructivism.Samuel Kahn - 2021 - Axiomathes 31 (1):63-72.
    In this paper I argue that constructivism in mathematics faces a dilemma. In particular, I maintain that constructivism is unable to explain (i) the application of mathematics to nature and (ii) the intersubjectivity of mathematics unless (iii) it is conjoined with two theses that reduce it to a form of mathematical Platonism. The paper is divided into five sections. In the first section of the paper, I explain the difference between mathematical constructivism and mathematical Platonism and I outline my argument. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relativity and Equivalence in Hilbert Space: A Principle-Theory Approach to the Aharonov–Bohm Effect.Guy Hetzroni - 2020 - Foundations of Physics 50 (2):120-135.
    This paper formulates generalized versions of the general principle of relativity and of the principle of equivalence that can be applied to general abstract spaces. It is shown that when the principles are applied to the Hilbert space of a quantum particle, its law of coupling to electromagnetic fields is obtained. It is suggested to understand the Aharonov-Bohm effect in light of these principles, and the implications for some related foundational controversies are discussed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Otávio Bueno* and Steven French.**Applying Mathematics: Immersion, Inference, Interpretation. [REVIEW]Anthony F. Peressini - 2020 - Philosophia Mathematica 28 (1):116-127.
    Otávio Bueno* * and Steven French.** ** Applying Mathematics: Immersion, Inference, Interpretation. Oxford University Press, 2018. ISBN: 978-0-19-881504-4 978-0-19-185286-2. doi:10.1093/oso/9780198815044. 001.0001. Pp. xvii + 257.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The development of renormalization group methods for particle physics: Formal analogies between classical statistical mechanics and quantum field theory.Doreen Fraser - 2020 - Synthese 197 (7):3027-3063.
    Analogies between classical statistical mechanics and quantum field theory played a pivotal role in the development of renormalization group methods for application in the two theories. This paper focuses on the analogies that informed the application of RG methods in QFT by Kenneth Wilson and collaborators in the early 1970's. The central task that is accomplished is the identification and analysis of the analogical mappings employed. The conclusion is that the analogies in this case study are formal analogies, and not (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Non-ontological Structuralism†.Michael Resnik - 2019 - Philosophia Mathematica 27 (3):303-315.
    ABSTRACT Historical structuralist views have been ontological. They either deny that there are any mathematical objects or they maintain that mathematical objects are structures or positions in them. Non-ontological structuralism offers no account of the nature of mathematical objects. My own structuralism has evolved from an early sui generis version to a non-ontological version that embraces Quine’s doctrine of ontological relativity. In this paper I further develop and explain this view.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Darwinism in metaethics: What if the universal acid cannot be contained?Eleonora Severini & Fabio Sterpetti - 2017 - History and Philosophy of the Life Sciences 39 (3):1-25.
    The aim of this article is to explore the impact of Darwinism in metaethics and dispel some of the confusion surrounding it. While the prospects for a Darwinian metaethics appear to be improving, some underlying epistemological issues remain unclear. We will focus on the so-called Evolutionary Debunking Arguments (EDAs) which, when applied in metaethics, are defined as arguments that appeal to the evolutionary origins of moral beliefs so as to undermine their epistemic justification. The point is that an epistemic disanalogy (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Wigner’s puzzle and the Pythagorean heuristic.Jane McDonnell - 2017 - Synthese 194 (8):2931-2948.
    It is argued that mathematics is unreasonably effective in fundamental physics, that this is genuinely mysterious, and that it is best explained by a version of Pythagorean metaphysics. It is shown how this can be reconciled with the fact that mathematics is not always effective in real world applications. The thesis is that physical structure approaches isomorphism with a highly symmetric mathematical structure at very high energy levels, such as would have existed in the early universe. As the universe cooled, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structuring Logical Space.Alejandro Pérez Carballo - 2014 - Philosophy and Phenomenological Research 92 (2):460-491.
    I develop a non-representationalist account of mathematical thought, on which the point of mathematical theorizing is to provide us with the conceptual capacity to structure and articulate information about the physical world in an epistemically useful way. On my view, accepting a mathematical theory is not a matter of having a belief about some subject matter; it is rather a matter of structuring logical space, in a sense to be made precise. This provides an elegant account of the cognitive utility (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Structuralism and the Applicability of Mathematics.Jairo José da Silva - 2010 - Global Philosophy 20 (2-3):229-253.
    In this paper I argue for the view that structuralism offers the best perspective for an acceptable account of the applicability of mathematics in the empirical sciences. Structuralism, as I understand it, is the view that mathematics is not the science of a particular type of objects, but of structural properties of arbitrary domains of entities, regardless of whether they are actually existing, merely presupposed or only intentionally intended.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Space, Time, and Stuff. [REVIEW]Steven Weinstein - 2013 - International Studies in the Philosophy of Science 27 (1):98 - 101.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Mystery of Applied Mathematics?: A Case Study in Mathematical Development Involving the Fractional Derivative†: Articles.Sheldon R. Smith - 2014 - Philosophia Mathematica 22 (1):35-69.
    I discuss the applicability of mathematics via a detailed case study involving a family of mathematical concepts known as ‘fractional derivatives.’ Certain formulations of the mystery of applied mathematics would lead one to believe that there ought to be a mystery about the applicability of fractional derivatives. I argue, however, that there is no clear mystery about their applicability. Thus, via this case study, I think that one can come to see more clearly why certain formulations of the mystery of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Against Mathematical Explanation.Mark Zelcer - 2013 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 44 (1):173-192.
    Lately, philosophers of mathematics have been exploring the notion of mathematical explanation within mathematics. This project is supposed to be analogous to the search for the correct analysis of scientific explanation. I argue here that given the way philosophers have been using “ explanation,” the term is not applicable to mathematics as it is in science.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Mathematical nominalism and measurement.Davide Rizza - 2010 - Philosophia Mathematica 18 (1):53-73.
    In this paper I defend mathematical nominalism by arguing that any reasonable account of scientific theories and scientific practice must make explicit the empirical non-mathematical grounds on which the application of mathematics is based. Once this is done, references to mathematical entities may be eliminated or explained away in terms of underlying empirical conditions. I provide evidence for this conclusion by presenting a detailed study of the applicability of mathematics to measurement. This study shows that mathematical nominalism may be regarded (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Platonism and anti‐Platonism: Why worry?Mary Leng - 2005 - International Studies in the Philosophy of Science 19 (1):65 – 84.
    This paper argues that it is scientific realists who should be most concerned about the issue of Platonism and anti-Platonism in mathematics. If one is merely interested in accounting for the practice of pure mathematics, it is unlikely that a story about the ontology of mathematical theories will be essential to such an account. The question of mathematical ontology comes to the fore, however, once one considers our scientific theories. Given that those theories include amongst their laws assertions that imply (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mind the gap: noncausal explanations of dual properties.Sorin Bangu - 2024 - Philosophical Studies 181 (4):789-809.
    I identify and characterize a type of noncausal explanation in physics. I first introduce a distinction, between the physical properties of a system, and the representational properties of the mathematical expressions of the system’s physical properties. Then I introduce a novel kind of property, which I shall call a dual property. This is a special kind of representational property, one for which there is an interpretation as a physical property. It is these dual properties that, I claim, are amenable to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Justifying the use of purely formal analogies in physics.Doreen Fraser - manuscript
    Recent case studies have revealed that purely formal analogies have been successfully used as a heuristic in physics. This is at odds with most general philosophical accounts of analogies, which require analogies to be physical in order to be justifiably used. The main goal of this paper is to supply a philosophical account that justifies the use of purely formal analogies in physics. Using Bartha’s (2010) articulation model as a starting point, I offer precise definitions of formal and physical analogies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Mathematical Analogies in Physics: the Curious Case of Gauge Symmetries.Guy Hetzroni & Noah Stemeroff - 2023 - In Carl Posy & Yemima Ben-Menahem (eds.), Mathematical Knowledge, Objects and Applications: Essays in Memory of Mark Steiner. Springer. pp. 229-262.
    Gauge symmetries provide one of the most puzzling examples of the applicability of mathematics in physics. The presented work focuses on the role of analogical reasoning in the gauge argument, motivated by Mark Steiner's claim that the application of the gauge principle relies on a Pythagorean analogy whose success undermines naturalist philosophy. In this paper, we present two different views concerning the analogy between gravity, electromagnetism, and nuclear interactions, each providing a different philosophical response to the problem of the applicability (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Foundations of applied mathematics I.Jeffrey Ketland - 2021 - Synthese 199 (1-2):4151-4193.
    This paper aims to study the foundations of applied mathematics, using a formalized base theory for applied mathematics: ZFCAσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathsf {ZFCA}_{\sigma }$$\end{document} with atoms, where the subscript used refers to a signature specific to the application. Examples are given, illustrating the following five features of applied mathematics: comprehension principles, application conditionals, representation hypotheses, transfer principles and abstract equivalents.
    Download  
     
    Export citation  
     
    Bookmark   2 citations