Switch to: References

Add citations

You must login to add citations.
  1. Scientific and Aesthetic Understanding: The Case of Musical Exemplification.Ivano Zanzarella - 2021 - Dissertation, Ruhr-Universität Bochum
    Abstract The Greek composer and architect Iannis Xenakis has shown in Formalized Music (1963) how it is possible to compose or describe music and sound by means of probabilistic laws from mathematics, information theory and statistical mechanics. In his theory, scientific concepts and properties such as entropy take on a musical meaning in that they become also properties structurally instantiable by music. Philosophically speaking, this raises many important questions about the relation between science and the arts. One of these questions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Poincaré, Poincaré Recurrence, and the H-Theorem: A Continued Reassessment of Boltzmannian Statistical Mechanics.Christopher Gregory Weaver - 2022 - International Journal of Modern Physics B 36 (23):2230005.
    In (Weaver 2021), I showed that Boltzmann’s H-theorem does not face a significant threat from the reversibility paradox. I argue that my defense of the H-theorem against that paradox can be used yet again for the purposes of resolving the recurrence paradox without having to endorse heavy-duty statistical assumptions outside of the hypothesis of molecular chaos. As in (Weaver 2021), lessons from the history and foundations of physics reveal precisely how such resolution is achieved.
    Download  
     
    Export citation  
     
    Bookmark  
  • Historical and Conceptual Foundations of Information Physics.Anta Javier - 2021 - Dissertation, Universitat de Barcelona
    The main objective of this dissertation is to philosophically assess how the use of informational concepts in the field of classical thermostatistical physics has historically evolved from the late 1940s to the present day. I will first analyze in depth the main notions that form the conceptual basis on which 'informational physics' historically unfolded, encompassing (i) different entropy, probability and information notions, (ii) their multiple interpretative variations, and (iii) the formal, numerical and semantic-interpretative relationships among them. In the following, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Neo-Nagelian reduction: a statement, defence, and application.Foad Dizadji-Bahmani - 2011 - Dissertation, London School of Economics
    The thesis proposes, defends, and applies a new model of inter-theoretic reduction, called "Neo-Nagelian" reduction. There are numerous accounts of inter-theoretic reduction in the philosophy of science literature but the most well-known and widely-discussed is the Nagelian one. In the thesis I identify various kinds of problems which the Nagelian model faces. Whilst some of these can be resolved, pressing ones remain. In lieu of the Nagelian model, other models of inter-theoretic reduction have been proposed, chief amongst which are so-called (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Shakin’ All Over: Proving Landauer’s Principle without Neglect of Fluctuations.Wayne C. Myrvold - 2024 - British Journal for the Philosophy of Science 75 (3):587-616.
    Landauer’s principle is, roughly, the principle that logically irreversible operations cannot be performed without dissipation of energy, with a specified lower bound on that dissipation. Although widely accepted in the literature on the thermodynamics of computation, it has been the subject of considerable dispute in the philosophical literature. Proofs of the principle have been questioned on the grounds of insufficient generality and on the grounds of the assumption, used in the proofs, of the availability of reversible processes at the microscale. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ignorance, Milk and Coffee: Can Epistemic States be Causally-Explanatorily Relevant in Statistical Mechanics?Javier Anta - 2021 - Foundation of Science.
    In this paper I will evaluate whether some knowledge states that are interpretatively derived from statistical mechanical probabilities could be somehow relevant in actual practices, as famously rejected by Albert (2000). On one side, I follow Frigg (2010a) in rejecting the causal relevance of knowledge states as a mere byproduct of misinterpreting this theoretical field. On the other side, I will argue against Uffink (2011) that probability-represented epistemic states cannot be explanatorily relevant, because (i) probabilities cannot faithfully represent significant epistemic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • In Praise of Clausius Entropy: Reassessing the Foundations of Boltzmannian Statistical Mechanics.Christopher Gregory Weaver - 2021 - Foundations of Physics 51 (3):1-64.
    I will argue, pace a great many of my contemporaries, that there's something right about Boltzmann's attempt to ground the second law of thermodynamics in a suitably amended deterministic time-reversal invariant classical dynamics, and that in order to appreciate what's right about (what was at least at one time) Boltzmann's explanatory project, one has to fully apprehend the nature of microphysical causal structure, time-reversal invariance, and the relationship between Boltzmann entropy and the work of Rudolf Clausius.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Science of $${\Theta \Delta }^{\text{cs}}$$.Wayne C. Myrvold - 2020 - Foundations of Physics 50 (10):1219-1251.
    There is a long tradition of thinking of thermodynamics, not as a theory of fundamental physics, but as a theory of how manipulations of a physical system may be used to obtain desired effects, such as mechanical work. On this view, the basic concepts of thermodynamics, heat and work, and with them, the concept of entropy, are relative to a class of envisaged manipulations. This article is a sketch and defense of a science of manipulations and their effects on physical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Asymmetry, Abstraction, and Autonomy: Justifying Coarse-Graining in Statistical Mechanics.Katie Robertson - 2020 - British Journal for the Philosophy of Science 71 (2):547-579.
    While the fundamental laws of physics are time-reversal invariant, most macroscopic processes are irreversible. Given that the fundamental laws are taken to underpin all other processes, how can the fundamental time-symmetry be reconciled with the asymmetry manifest elsewhere? In statistical mechanics, progress can be made with this question. What I dub the ‘Zwanzig–Zeh–Wallace framework’ can be used to construct the irreversible equations of SM from the underlying microdynamics. Yet this framework uses coarse-graining, a procedure that has faced much criticism. I (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Mind and the Physical World: A Psychologist's Exploration of Modern Physical Theory.Douglas Michael Snyder - 1995 - Los Angeles, USA: Tailor Press.
    The mind of man is central to the structure and functioning of the physical world. Modern physical theory indicates that the mind stands in a relationship of equals to the physical world. Both are fundamental, neither can be reduced to the other, and both require each other for their full understanding. This thesis is at odds with the view of the universe found in Newtonian mechanics as well as the generally held view among contemporary physicists of modern physical theory. Since (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reaction kinetics of non-localised particle–trap complexes.A. V. Barashev, S. I. Golubov, YuN Osetsky & R. E. Stoller - 2010 - Philosophical Magazine 90 (7-8):897-906.
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)When does a Boltzmannian equilibrium exist?Charlotte Werndl & Roman Frigg - 2016 - In Charlotte Werndl & Roman Frigg (eds.).
    The received wisdom in statistical mechanics is that isolated systems, when left to themselves, approach equilibrium. But under what circumstances does an equilibrium state exist and an approach to equilibrium take place? In this paper we address these questions from the vantage point of the long-run fraction of time definition of Boltzmannian equilibrium that we developed in two recent papers. After a short summary of Boltzmannian statistical mechanics and our definition of equilibrium, we state an existence theorem which provides general (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The emergence and interpretation of probability in Bohmian mechanics.Craig Callender - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):351-370.
    A persistent question about the deBroglie–Bohm interpretation of quantum mechanics concerns the understanding of Born’s rule in the theory. Where do the quantum mechanical probabilities come from? How are they to be interpreted? These are the problems of emergence and interpretation. In more than 50 years no consensus regarding the answers has been achieved. Indeed, mirroring the foundational disputes in statistical mechanics, the answers to each question are surprisingly diverse. This paper is an opinionated survey of this literature. While acknowledging (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (1 other version)Inferential vs. Dynamical Conceptions of Physics.David Wallace - unknown
    I contrast two possible attitudes towards a given branch of physics: as inferential, and as dynamical. I contrast these attitudes in classical statistical mechanics, in quantum mechanics, and in quantum statistical mechanics; in this last case, I argue that the quantum-mechanical and statistical-mechanical aspects of the question become inseparable. Along the way various foundational issues in statistical and quantum physics are illuminated.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Meta-Reversibility Objection.Meacham Christopher - 2023 - In Barry Loewer, Brad Weslake & Eric B. Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _time and Chance_. Cambridge MA: Harvard University Press.
    One popular approach to statistical mechanics understands statistical mechanical probabilities as measures of rational indifference. Naive formulations of this ``indifference approach'' face reversibility worries - while they yield the right prescriptions regarding future events, they yield the wrong prescriptions regarding past events. This paper begins by showing how the indifference approach can overcome the standard reversibility worries by appealing to the Past Hypothesis. But, the paper argues, positing a Past Hypothesis doesn't free the indifference approach from all reversibility worries. For (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • It's About Time: Dynamics of Inflationary Cosmology as the Source of the Asymmetry of Time.Emre Keskin - 2014 - Dissertation, University of South Florida
    This project is about the asymmetry of time. The main source of discontent for physicists and philosophers alike is that even though in every physical theory we developed and/or discovered for explaining how the universe functions, the laws are time reversal invariant; there seems to be a very genuine asymmetry between the past and the future. The aim of this project is to examine several attempts to solve this friction between the laws of physics and the asymmetry and provide a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Spin-Echo System Reconsidered.D. A. Lavis - 2004 - Foundations of Physics 34 (4):669-688.
    Simple models have played an important role in the discussion of foundational issues in statistical mechanics. Among them the spin-echo system is of particular interest since it can be realized experimentally. This has led to inferences being drawn about approaches to the foundations of statistical mechanics, particularly with respect to the use of coarse-graining. We examine these claims with the help of computer simulations.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Multinomial Distribution, Quantum Statistics and Einstein-Podolsky-Rosen Like Phenomena.Ratan Dasgupta & Sisir Roy - 2008 - Foundations of Physics 38 (4):384-394.
    Bose-Einstein statistics may be characterized in terms of multinomial distribution. From this characterization, an information theoretic analysis is made for Einstein-Podolsky-Rosen like situation; using Shannon’s measure of entropy.
    Download  
     
    Export citation  
     
    Bookmark  
  • The direction of time.R. Mirman - 1975 - Foundations of Physics 5 (3):491-511.
    The meaning of the phrase “the direction of time” and the physical problems involved are considered. These problems are discussed and plausibility arguments are given to show that all clocks run in the same direction (almost always), that the most probable development of the Universe during the early stages of the expansion would result in the introduction of some internal organization, and that the expansion of the Universe and the increase in entropy define time directions that have the same sense. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Statistical mechanics and the ontological interpretation.D. Bohm & B. J. Hiley - 1996 - Foundations of Physics 26 (6):823-846.
    To complete our ontological interpretation of quantum theory we have to conclude a treatment of quantum statistical mechanics. The basic concepts in the ontological approach are the particle and the wave function. The density matrix cannot play a fundamental role here. Therefore quantum statistical mechanics will require a further statistical distribution over wave functions in addition to the distribution of particles that have a specified wave function. Ultimately the wave function of the universe will he required, but we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Maxwell's demon and the entropy cost of information.Paul N. Fahn - 1996 - Foundations of Physics 26 (1):71-93.
    We present an analysis of Szilard's one-molecule Maxwell's demon, including a detailed entropy accounting, that suggests a general theory of the entropy cost of information. It is shown that the entropy of the demon increases during the expansion step, due to the decoupling of the molecule from the measurement information. It is also shown that there is an entropy symmetry between the measurement and erasure steps, whereby the two steps additivelv share a constant entropy change, but the proportion that occurs (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Transform information: A symmetry breaking measure.G. V. Vstovsky - 1997 - Foundations of Physics 27 (10):1413-1444.
    A connection between two fundamental concepts of information and symmetry breaking (SB) is established. A concept called transform information (TI) is introduced. The known information measures (Hartley, von Neumann-Shannon-Wiener, Fisher informations, Renyi entropies) can be derived as (or mathematically expressed by) the particular forms of TI for certain transforms of a physical systems (when they are described by the probability measures). As TI is zero when the system is invariant under respective transform, it can be considered, when nonzero, as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Probabilities in Statistical Mechanics.Wayne C. Myrvold - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 573-600.
    This chapter will review selected aspects of the terrain of discussions about probabilities in statistical mechanics (with no pretensions to exhaustiveness, though the major issues will be touched upon), and will argue for a number of claims. None of the claims to be defended is entirely original, but all deserve emphasis. The first, and least controversial, is that probabilistic notions are needed to make sense of statistical mechanics. The reason for this is the same reason that convinced Maxwell, Gibbs, and (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The End of the Thermodynamics of Computation: A No Go Result.John D. Norton - 2013 - Philosophy of Science 80 (5):1182-1192.
    The thermodynamics of computation assumes that computational processes at the molecular level can be brought arbitrarily close to thermodynamic reversibility and that thermodynamic entropy creation is unavoidable only in data erasure or the merging of computational paths, in accord with Landauer’s principle. The no-go result shows that fluctuations preclude completion of thermodynamically reversible processes. Completion can be achieved only by irreversible processes that create thermodynamic entropy in excess of the Landauer limit.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The ergodic hierarchy.Roman Frigg & Joseph Berkovitz - 2011 - Stanford Encyclopedia of Philosophy.
    The so-called ergodic hierarchy (EH) is a central part of ergodic theory. It is a hierarchy of properties that dynamical systems can possess. Its five levels are egrodicity, weak mixing, strong mixing, Kolomogorov, and Bernoulli. Although EH is a mathematical theory, its concepts have been widely used in the foundations of statistical physics, accounts of randomness, and discussions about the nature of chaos. We introduce EH and discuss how its applications in these fields.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Time in Thermodynamics.Jill North - 2011 - In Craig Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford University Press. pp. 312--350.
    Or better: time asymmetry in thermodynamics. Better still: time asymmetry in thermodynamic phenomena. “Time in thermodynamics” misleadingly suggests that thermodynamics will tell us about the fundamental nature of time. But we don’t think that thermodynamics is a fundamental theory. It is a theory of macroscopic behavior, often called a “phenomenological science.” And to the extent that physics can tell us about the fundamental features of the world, including such things as the nature of time, we generally think that only fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Three pertinent issues in the modeling of brain activity: Nonlinearities, time scales, and neural underpinnings.A. Daffertshofer, T. D. Frank, C. E. Peper & P. J. Beek - 2000 - Behavioral and Brain Sciences 23 (3):400-401.
    A critical discussion is provided of three central assumptions underlying Nunez's approach to modeling cortical activity. A plea is made for neurophysiologically realistic models involving nonlinearities, multiple time scales, and stochasticity.
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of statistical mechanics.Lawrence Sklar - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Compendium of the foundations of classical statistical physics.Jos Uffink - 2006 - In J. Butterfield & J. Earman (eds.), Handbook of the philosophy of physics. Kluwer Academic Publishers.
    Roughly speaking, classical statistical physics is the branch of theoretical physics that aims to account for the thermal behaviour of macroscopic bodies in terms of a classical mechanical model of their microscopic constituents, with the help of probabilistic assumptions. In the last century and a half, a fair number of approaches have been developed to meet this aim. This study of their foundations assesses their coherence and analyzes the motivations for their basic assumptions, and the interpretations of their central concepts. (...)
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • Particles, objects, and physics.Justin Pniower - unknown
    This thesis analyses the ontological nature of quantum particles. In it I argue that quantum particles, despite their indistinguishability, are objects in much the same way as classical particles. This similarity provides an important point of continuity between classical and quantum physics. I consider two notions of indistinguishability, that of indiscernibility and permutation symmetry. I argue that neither sort of indistinguishability undermines the identity of quantum particles. I further argue that, when we understand in distinguishability in terms of permutation symmetry, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Does a Computer Have an Arrow of Time?Owen J. E. Maroney - 2010 - Foundations of Physics 40 (2):205-238.
    Schulman (Entropy 7(4):221–233, 2005) has argued that Boltzmann’s intuition, that the psychological arrow of time is necessarily aligned with the thermodynamic arrow, is correct. Schulman gives an explicit physical mechanism for this connection, based on the brain being representable as a computer, together with certain thermodynamic properties of computational processes. Hawking (Physical Origins of Time Asymmetry, Cambridge University Press, Cambridge, 1994) presents similar, if briefer, arguments. The purpose of this paper is to critically examine the support for the link between (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)A field guide to recent work on the foundations of statistical mechanics.Roman Frigg - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate. pp. 99-196.
    This is an extensive review of recent work on the foundations of statistical mechanics.
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • On the fundamental nature of perception.Kenneth H. Norwich - 1991 - Acta Biotheoretica 39 (1):81-90.
    The process of recognition or isolation of one or several entities from among many possible entities is termed intellego perception. It is shown that not only are many of our everyday percepts of this type, but perception of microscopic events using the methods of quantum mechanics are also intellego in nature. Information theory seems to be a natural language in which to express perceptual activity of this type. It is argued that the biological organism quantifies its sensations using an information (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Three proposals regarding a theory of chance.Christopher J. G. Meacham - 2005 - Philosophical Perspectives 19 (1):281–307.
    I argue that the theory of chance proposed by David Lewis has three problems: (i) it is time asymmetric in a manner incompatible with some of the chance theories of physics, (ii) it is incompatible with statistical mechanical chances, and (iii) the content of Lewis's Principal Principle depends on how admissibility is cashed out, but there is no agreement as to what admissible evidence should be. I proposes two modifications of Lewis's theory which resolve these difficulties. I conclude by tentatively (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Is classical mechanics really time-reversible and deterministic?Keith Hutchison - 1993 - British Journal for the Philosophy of Science 44 (2):307-323.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • An interpretation of macroscopic irreversibility within the Newtonian framework.Henry B. Hollinger & Michael J. Zenzen - 1982 - Philosophy of Science 49 (3):309-354.
    Some of the most imaginative analyses in contemporary science have been fostered by the paradox of irreversibility. Rendered as a question the paradox reads: How can the anisotropic macrophysical behavior of a system of molecules be reconciled with the underlying reversible molecular model? Attempts to resolve and dissolve the paradox have appealed to large numbers of particles, jammed correlations, unseen perturbations, hidden variables or constraints, uncertainty principles, averaging procedures (e.g., coarse graining and time smoothing), stochastic flaws, cosmological origins, etc. While (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Irreversibility and statistical mechanics: A new approach?Robert W. Batterman - 1990 - Philosophy of Science 57 (3):395-419.
    I discuss a broad critique of the classical approach to the foundations of statistical mechanics (SM) offered by N. S. Krylov. He claims that the classical approach is in principle incapable of providing the foundations for interpreting the "laws" of statistical physics. Most intriguing are his arguments against adopting a de facto attitude towards the problem of irreversibility. I argue that the best way to understand his critique is as setting the stage for a positive theory which treats SM as (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the quantum mechanics of consciousness, with application to anomalous phenomena.Robert G. Jahn & Brenda J. Dunne - 1986 - Foundations of Physics 16 (8):721-772.
    Theoretical explication of a growing body of empirical data on consciousness-related anomalous phenomena is unlikely to be achieved in terms of known physical processes. Rather, it will first be necessary to formulate the basic role of consciousness in the definition of reality before such anomalous experience can adequately be represented. This paper takes the position that reality is constituted only in the interaction of consciousness with its environment, and therefore that any scheme of conceptual organization developed to represent that reality (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • How to be indifferent.Sebastian Liu - forthcoming - Noûs.
    According to the principle of indifference, when a set of possibilities is evidentially symmetric for you – when your evidence no more supports any one of the possibilities over any other – you're required to distribute your credences uniformly among them. Despite its intuitive appeal, the principle of indifference is often thought to be unsustainable due to the problem of multiple partitions: Depending on how a set of possibilities is divided, it seems that sometimes, applying indifference reasoning can require you (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Statistical Mechanics: A Tale of Two Theories.Roman Frigg & Charlotte Werndl - 2019 - The Monist 102 (4):424-438.
    There are two theoretical approaches in statistical mechanics, one associated with Boltzmann and the other with Gibbs. The theoretical apparatus of the two approaches offer distinct descriptions of the same physical system with no obvious way to translate the concepts of one formalism into those of the other. This raises the question of the status of one approach vis-à-vis the other. We answer this question by arguing that the Boltzmannian approach is a fundamental theory while Gibbsian statistical mechanics is an (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Equilibrium in Boltzmannian Statistical Mechanics.Roman Frigg & Charlotte Werndl - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Who’s Afraid of Nagelian Reduction?Foad Dizadji-Bahmani, Roman Frigg & Stephan Hartmann - 2010 - Erkenntnis 73 (3):393-412.
    We reconsider the Nagelian theory of reduction and argue that, contrary to a widely held view, it is the right analysis of intertheoretic reduction. The alleged difficulties of the theory either vanish upon closer inspection or turn out to be substantive philosophical questions rather than knock-down arguments.
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • An empirical approach to symmetry and probability.Jill North - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (1):27-40.
    We often use symmetries to infer outcomes’ probabilities, as when we infer that each side of a fair coin is equally likely to come up on a given toss. Why are these inferences successful? I argue against answering this with an a priori indifference principle. Reasons to reject that principle are familiar, yet instructive. They point to a new, empirical explanation for the success of our probabilistic predictions. This has implications for indifference reasoning in general. I argue that a priori (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Probabilities in Statistical Mechanics: Subjective, Objective, or a Bit of Both?Wayne C. Myrvold - unknown
    This paper addresses the question of how we should regard the probability distributions introduced into statistical mechanics. It will be argued that it is problematic to take them either as purely subjective credences, or as objective chances. I will propose a third alternative: they are "almost objective" probabilities, or "epistemic chances". The definition of such probabilities involves an interweaving of epistemic and physical considerations, and so cannot be classified as either purely subjective or purely objective. This conception, it will be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Statistical Mechanical Theory of a Closed Oscillating Universe.A. Pérez-Madrid & I. Santamaría-Holek - 2010 - Foundations of Physics 40 (3):267-275.
    Based on Newton’s laws reformulated in the Hamiltonian dynamics combined with statistical mechanics, we formulate a statistical mechanical theory supporting the hypothesis of a closed universe oscillating in phase-space. We find that the behavior of this universe as a whole can be represented by a free entropic oscillator whose lifespan is nonhomogeneous, thus implying that time is shorter or longer according to the state of this universe given through its entropy. We conclude that time reduces to the entropy production of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On measurement and irreversible processes.Gunnar Sperber - 1974 - Foundations of Physics 4 (2):163-179.
    The nature of physical measurements performed on microscopic systems is discussed, and it is suggested that the procedures which are conventionally referred to as “measurements” fall into at least three different categories. The connection between observation processes and irreversible processes is stressed. The customary quantum mechanical treatment of irreversible processes is discussed, and its deficiencies from the philosophical point of view are criticized. The standpoint that quantum mechanics should not be considered as a basic philosophical system but rather as an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Psa 2012.-Preprint Volume- - unknown
    These preprints were automatically compiled into a PDF from the collection of papers deposited in PhilSci-Archive in conjunction with the PSA 2012.
    Download  
     
    Export citation  
     
    Bookmark  
  • What is a macrostate? Subjective observations and objective dynamics.Cosma Rohilla Shalizi & Cristopher Moore - unknown
    We consider the question of whether thermodynamic macrostates are objective consequences of dynamics, or subjective reflections of our ignorance of a physical system. We argue that they are both; more specifically, that the set of macrostates forms the unique maximal partition of phase space which 1) is consistent with our observations (a subjective fact about our ability to observe the system) and 2) obeys a Markov process (an objective fact about the system's dynamics). We review the ideas of computational mechanics, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Popper, grünbaum and de facto irreversibility.Michael J. Zenzen - 1977 - British Journal for the Philosophy of Science 28 (4):313-324.
    Download  
     
    Export citation  
     
    Bookmark   3 citations