Switch to: Citations

Add references

You must login to add references.
  1. Making things happen: a theory of causal explanation.James F. Woodward - 2003 - New York: Oxford University Press.
    Woodward's long awaited book is an attempt to construct a comprehensive account of causation explanation that applies to a wide variety of causal and explanatory claims in different areas of science and everyday life. The book engages some of the relevant literature from other disciplines, as Woodward weaves together examples, counterexamples, criticisms, defenses, objections, and replies into a convincing defense of the core of his theory, which is that we can analyze causation by appeal to the notion of manipulation.
    Download  
     
    Export citation  
     
    Bookmark   1792 citations  
  • The nature of selection: evolutionary theory in philosophical focus.Elliott Sober - 1984 - Chicago: University of Chicago Press.
    The Nature of Selection is a straightforward, self-contained introduction to philosophical and biological problems in evolutionary theory. It presents a powerful analysis of the evolutionary concepts of natural selection, fitness, and adaptation and clarifies controversial issues concerning altruism, group selection, and the idea that organisms are survival machines built for the good of the genes that inhabit them. "Sober's is the answering philosophical voice, the voice of a first-rate philosopher and a knowledgeable student of contemporary evolutionary theory. His book merits (...)
    Download  
     
    Export citation  
     
    Bookmark   761 citations  
  • Philosophy of Biology.Elliott Sober - 1993 - Boulder, Colo.: Routledge.
    Perhaps because of it implications for our understanding of human nature, recent philosophy of biology has seen what might be the most dramatic work in the philosophies of the ?special? sciences. This drama has centered on evolutionary theory, and in the second edition of this textbook, Elliott Sober introduces the reader to the most important issues of these developments. With a rare combination of technical sophistication and clarity of expression, Sober engages both the higher level of theory and the direct (...)
    Download  
     
    Export citation  
     
    Bookmark   150 citations  
  • Reply to Alexander Rosenberg's Review of The Nature of Selection.Elliott Sober - 1986 - Behaviorism 14 (1):77-88.
    Download  
     
    Export citation  
     
    Bookmark   408 citations  
  • (1 other version)The propensity interpretation of probability.Karl R. Popper - 1959 - British Journal for the Philosophy of Science 10 (37):25-42.
    Download  
     
    Export citation  
     
    Bookmark   257 citations  
  • Two ways of thinking about fitness and natural selection.Mohan Matthen & André Ariew - 2002 - Journal of Philosophy 99 (2):55-83.
    How do fitness and natural selection relate to other evolutionary factors like architectural constraint, mode of reproduction, and drift? In one way of thinking, drawn from Newtonian dynamics, fitness is one force driving evolutionary change and added to other factors. In another, drawn from statistical thermodynamics, it is a statistical trend that manifests itself in natural selection histories. It is argued that the first model is incoherent, the second appropriate; a hierarchical realization model is proposed as a basis for a (...)
    Download  
     
    Export citation  
     
    Bookmark   204 citations  
  • (1 other version)Conceptual Issues in Evolutionary Biology.Elliott Sober (ed.) - 1994 - The Mit Press. Bradford Books.
    Changes and additions in the new edition reflect the ways in which the subject has broadened and deepened on several fronts; more than half of the-chapters are ...
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • The propensity interpretation of fitness.Susan K. Mills & John H. Beatty - 1979 - Philosophy of Science 46 (2):263-286.
    The concept of "fitness" is a notion of central importance to evolutionary theory. Yet the interpretation of this concept and its role in explanations of evolutionary phenomena have remained obscure. We provide a propensity interpretation of fitness, which we argue captures the intended reference of this term as it is used by evolutionary theorists. Using the propensity interpretation of fitness, we provide a Hempelian reconstruction of explanations of evolutionary phenomena, and we show why charges of circularity which have been levelled (...)
    Download  
     
    Export citation  
     
    Bookmark   222 citations  
  • The trials of life: Natural selection and random drift.Denis M. Walsh, Andre Ariew & Tim Lewens - 2002 - Philosophy of Science 69 (3):452-473.
    We distinguish dynamical and statistical interpretations of evolutionary theory. We argue that only the statistical interpretation preserves the presumed relation between natural selection and drift. On these grounds we claim that the dynamical conception of evolutionary theory as a theory of forces is mistaken. Selection and drift are not forces. Nor do selection and drift explanations appeal to the (sub-population-level) causes of population level change. Instead they explain by appeal to the statistical structure of populations. We briefly discuss the implications (...)
    Download  
     
    Export citation  
     
    Bookmark   197 citations  
  • Adaptation and Evolutionary Theory.Robert N. Brandon - 1978 - Studies in History and Philosophy of Science Part A 9 (3):181.
    Download  
     
    Export citation  
     
    Bookmark   199 citations  
  • Natural selection as a population-level causal process.Roberta L. Millstein - 2006 - British Journal for the Philosophy of Science 57 (4):627-653.
    Recent discussions in the philosophy of biology have brought into question some fundamental assumptions regarding evolutionary processes, natural selection in particular. Some authors argue that natural selection is nothing but a population-level, statistical consequence of lower-level events (Matthen and Ariew [2002]; Walsh et al. [2002]). On this view, natural selection itself does not involve forces. Other authors reject this purely statistical, population-level account for an individual-level, causal account of natural selection (Bouchard and Rosenberg [2004]). I argue that each of these (...)
    Download  
     
    Export citation  
     
    Bookmark   158 citations  
  • (1 other version)A propensity interpretation of probability.Karl Popper - 2010 - In Antony Eagle, Philosophy of Probability: Contemporary Readings. New York: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   125 citations  
  • Philosophy of Biology.Sergio Sismondo - 1995 - Philosophical Review 104 (1):164.
    Download  
     
    Export citation  
     
    Bookmark   149 citations  
  • (1 other version)Philosophy of Biology.Elliott Sober & Pénel Jean-Dominique - 1995 - Revue Philosophique de la France Et de l'Etranger 185 (3):382-383.
    Download  
     
    Export citation  
     
    Bookmark   145 citations  
  • Fitness, probability and the principles of natural selection.Frederic Bouchard & Alexander Rosenberg - 2004 - British Journal for the Philosophy of Science 55 (4):693-712.
    We argue that a fashionable interpretation of the theory of natural selection as a claim exclusively about populations is mistaken. The interpretation rests on adopting an analysis of fitness as a probabilistic propensity which cannot be substantiated, draws parallels with thermodynamics which are without foundations, and fails to do justice to the fundamental distinction between drift and selection. This distinction requires a notion of fitness as a pairwise comparison between individuals taken two at a time, and so vitiates the interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • Epiphenomenalism - the do's and the don 'ts'.Lawrence A. Shapiro & Elliott Sober - 2006 - In G. Wolters & Peter K. Machamer, Thinking about Causes: From Greek Philosophy to Modern Physics. University of Pittsburgh Press. pp. 235-264.
    When philosophers defend epiphenomenalist doctrines, they often do so by way of a priori arguments. Here we suggest an empirical approach that is modeled on August Weismann’s experimental arguments against the inheritance of acquired characters. This conception of how epiphenomenalism ought to be developed helps clarify some mistakes in two recent epiphenomenalist positions – Jaegwon Kim’s (1993) arguments against mental causation, and the arguments developed by Walsh (2000), Walsh, Lewens, and Ariew (2002), and Matthen and Ariew (2002) that natural selection (...)
    Download  
     
    Export citation  
     
    Bookmark   106 citations  
  • The two faces of fitness.Elliott Sober - manuscript
    The concept of fitness began its career in biology long before evolutionary theory was mathematized. Fitness was used to describe an organism’s vigor, or the degree to which organisms “fit” into their environments. An organism’s success in avoiding predators and in building a nest obviously contribute to its fitness and to the fitness of its offspring, but the peacock’s gaudy tail seemed to be in an entirely different line of work. Fitness, as a term in ordinary language (as in “physical (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • (2 other versions)Do the Laws of Physics State the Facts?Nancy Cartwright - 1980 - Pacific Philosophical Quarterly 61 (1-2):75-84.
    The facticity view of fundamental laws of physics takes them to state facts about reality. To preserve the facticity of laws in the face of complex phenomena with multiple intervening factors, composition of causes, often by vector addition, is invoked. However, this addition should be read only as a metaphor, for only the resultant force is real. The truth and the explanatory power of laws can both be preserved by viewing laws as describing causal powers that objects possess, but this (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Selection, drift, and the “forces” of evolution.Christopher Stephens - 2004 - Philosophy of Science 71 (4):550-570.
    Recently, several philosophers have challenged the view that evolutionary theory is usefully understood by way of an analogy with Newtonian mechanics. Instead, they argue that evolutionary theory is merely a statistical theory. According to this alternate approach, natural selection and random genetic drift are not even causes, much less forces. I argue that, properly understood, the Newtonian analogy is unproblematic and illuminating. I defend the view that selection and drift are causes in part by attending to a pair of important (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • The confusions of fitness.André Ariew & Richard C. Lewontin - 2004 - British Journal for the Philosophy of Science 55 (2):347-363.
    The central point of this essay is to demonstrate the incommensurability of ‘Darwinian fitness’ with the numeric values associated with reproductive rates used in population genetics. While sometimes both are called ‘fitness’, they are distinct concepts coming from distinct explanatory schemes. Further, we try to outline a possible answer to the following question: from the natural properties of organisms and a knowledge of their environment, can we construct an algorithm for a particular kind of organismic life-history pattern that itself will (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • Manipulation and the causes of evolution.Kenneth Reisman & Patrick Forber - 2005 - Philosophy of Science 72 (5):1113-1123.
    Evolutionary processes such as natural selection and random drift are commonly regarded as causes of population-level change. We respond to a recent challenge that drift and selection are best understood as statistical trends, not causes. Our reply appeals to manipulation as a strategy for uncovering causal relationships: if you can systematically manipulate variable A to bring about a change in variable B, then A is a cause of B. We argue that selection and drift can be systematically manipulated to produce (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Twenty-one arguments against propensity analyses of probability.Antony Eagle - 2004 - Erkenntnis 60 (3):371–416.
    I argue that any broadly dispositional analysis of probability will either fail to give an adequate explication of probability, or else will fail to provide an explication that can be gainfully employed elsewhere (for instance, in empirical science or in the regulation of credence). The diversity and number of arguments suggests that there is little prospect of any successful analysis along these lines.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Evolutionary theory and the reality of macro probabilities.Elliott Sober - 2010 - In Ellery Eells & James H. Fetzer, The Place of Probability in Science: In Honor of Ellery Eells (1953-2006). Springer. pp. 133--60.
    Evolutionary theory is awash with probabilities. For example, natural selection is said to occur when there is variation in fitness, and fitness is standardly decomposed into two components, viability and fertility, each of which is understood probabilistically. With respect to viability, a fertilized egg is said to have a certain chance of surviving to reproductive age; with respect to fertility, an adult is said to have an expected number of offspring.1 There is more to evolutionary theory than the theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • (2 other versions)Do the Laws of Physics State the Facts?Nancy Cartwright - 1998 - In Martin Curd & Jan A. Cover, Philosophy of Science: The Central Issues. Norton. pp. 865-877.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • The Confusions of Fitness.AndrÉ Ariew - 2004 - British Journal for the Philosophy of Science 55 (2):347-363.
    The central point of this essay is to demonstrate the incommensurability of ‘Darwinian fitness’ with the numeric values associated with reproductive rates used in population genetics. While sometimes both are called ‘fitness’, they are distinct concepts coming from distinct explanatory schemes. Further, we try to outline a possible answer to the following question: from the natural properties of organisms and a knowledge of their environment, can we construct an algorithm for a particular kind of organismic life-history pattern that itself will (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Is indeterminism the source of the statistical character of evolutionary theory?Leslie Graves, Barbara L. Horan & Alex Rosenberg - 1999 - Philosophy of Science 66 (1):140-157.
    We argue that Brandon and Carson's (1996) "The Indeterministic Character of Evolutionary Theory" fails to identify any indeterminism that would require evolutionary theory to be a statistical or probabilistic theory. Specifically, we argue that (1) their demonstration of a mechanism by which quantum indeterminism might "percolate up" to the biological level is irrelevant; (2) their argument that natural selection is indeterministic because it is inextricably connected with drift fails to join the issue with determinism; and (3) their view that experimental (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • (1 other version)Chasing shadows: Natural selection and adaptation.D. M. Walsh - 2000 - Studies in History and Philosophy of Science Part A 31 (1):135-53.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Interpretations of probability in evolutionary theory.Roberta L. Millstein - 2003 - Philosophy of Science 70 (5):1317-1328.
    Evolutionary theory (ET) is teeming with probabilities. Probabilities exist at all levels: the level of mutation, the level of microevolution, and the level of macroevolution. This uncontroversial claim raises a number of contentious issues. For example, is the evolutionary process (as opposed to the theory) indeterministic, or is it deterministic? Philosophers of biology have taken different sides on this issue. Millstein (1997) has argued that we are not currently able answer this question, and that even scientific realists ought to remain (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)Chasing shadows: natural selection and adaptation.D. M. Walsh - 2000 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 31 (1):135-153.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • (3 other versions)What has Natural Information to Do with Intentional Representation?Ruth Garrett Millikan - 2001 - In D. Walsh, Evolution, Naturalism and Mind. Cambridge University Press. pp. 105-125.
    "According to informational semantics, if it's necessary that a creature can't distinguish Xs from Ys, it follows that the creature can't have a concept that applies to Xs but not Ys." (Jerry Fodor, The Elm and the Expert, p.32).
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Discussion note: Indeterminism, probability, and randomness in evolutionary theory.Alex Rosenberg - 2001 - Philosophy of Science 68 (4):536-544.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • On fitness.Costas B. Krimbas - 2004 - Biology and Philosophy 19 (2):185-203.
    The concept of fitness, central to population genetics and to the synthetic theory of evolution, is discussed. After a historical introduction on the origin of this concept, the current meaning of it in population genetics is examined: a cause of the selective process and its quantification. Several difficulties arise for its exact definition. Three adequacy criteria for such a definition are formulated. It is shown that it is impossible to formulate an adequate definition of fitness respecting these criteria. The propensity (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • What's wrong with the emergentist statistical interpretation of natural selection and random drift.Robert N. Brandon & Grant Ramsey - 2007 - In David L. Hull & Michael Ruse, The Cambridge Companion to the Philosophy of Biology. New York: Cambridge University Press. pp. 66--84.
    Population-level theories of evolution—the stock and trade of population genetics—are statistical theories par excellence. But what accounts for the statistical character of population-level phenomena? One view is that the population-level statistics are a product of, are generated by, probabilities that attach to the individuals in the population. On this conception, population-level phenomena are explained by individual-level probabilities and their population-level combinations. Another view, which arguably goes back to Fisher but has been defended recently, is that the population-level statistics are sui (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Fitness and Propensity’s Annulment?Marshall Abrams - 2007 - Biology and Philosophy 22 (1):115-130.
    Recent debate on the nature of probabilities in evolutionary biology has focused largely on the propensity interpretation of fitness (PIF), which defines fitness in terms of a conception of probability known as “propensity”. However, proponents of this conception of fitness have misconceived the role of probability in the constitution of fitness. First, discussions of probability and fitness have almost always focused on organism effect probability, the probability that an organism and its environment cause effects. I argue that much of the (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (3 other versions)What has Natural Information to do with Intentional Representation?Ruth Garrett Millikan - 2001 - Royal Institute of Philosophy Supplement 49:105-125.
    ‘According to informational semantics, if it's necessary that a creature can't distinguish Xs from Ys, it follows that the creature can't have a concept that applies to Xs but not Ys.’ There is, indeed, a form of informational semantics that has this verificationist implication. The original definition of information given in Dretske'sKnowledge and the Flow of Information, when employed as a base for a theory of intentional representation or ‘content,’ has this implication. I will argue that, in fact, most of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Determinism, realism, and probability in evolutionary theory.Marcel Weber - 2001 - Proceedings of the Philosophy of Science Association 2001 (3):S213-.
    Recent discussion of the statistical character of evolutionary theory has centered around two positions: (1) Determinism combined with the claim that the statistical character is eliminable, a subjective interpretation of probability, and instrumentalism; (2) Indeterminism combined with the claim that the statistical character is ineliminable, a propensity interpretation of probability, and realism. I point out some internal problems in these positions and show that the relationship between determinism, eliminability, realism, and the interpretation of probability is more complex than previously assumed (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Determinism, Realism, and Probability in Evolutionary Theory.Marcel Weber - 2001 - Philosophy of Science 68 (S3):S213-S224.
    Recent discussion of the statistical character of evolutionary theory has centered around two positions: Determinism combined with the claim that the statistical character is eliminable, a subjective interpretation of probability, and instrumentalism; Indeterminism combined with the claim that the statistical character is ineliminable, a propensity interpretation of probability, and realism. I point out some internal problems in these positions and show that the relationship between determinism, eliminability, realism, and the interpretation of probability is more complex than previously assumed in this (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • What's Wrong with the Emergentist Statistical Interpretation of Natural Selection and Random Drift?Robert N. Brandon & Grant Ramsey - 2007 - In David L. Hull & Michael Ruse, The Cambridge Companion to the Philosophy of Biology. New York: Cambridge University Press. pp. 66-84.
    Population-level theories of evolution—the stock and trade of population genetics—are statistical theories par excellence. But what accounts for the statistical character of population-level phenomena? One view is that the population-level statistics are a product of, are generated by, probabilities that attach to the individuals in the population. On this conception, population-level phenomena are explained by individual-level probabilities and their population-level combinations. Another view, which arguably goes back to Fisher but has been defended recently, is that the population-level statistics are sui (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A Defense of Propensity Interpretations of Fitness.Robert C. Richardson & Richard M. Burian - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:349 - 362.
    We offer a systematic examination of propensity interpretations of fitness, which emphasizes the role that fitness plays in evolutionary theory and takes seriously the probabilistic character of evolutionary change. We distinguish questions of the probabilistic character of fitness from the particular interpretations of probability which could be incorporated. The roles of selection and drift in evolutionary models support the view that fitness must be understood within a probabilistic framework, and the specific character of organism/environment interactions supports the conclusion that fitness (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Review of M aking Things Happen. [REVIEW]Eric Hiddleston - 2005 - Philosophical Review 114 (4):545-547.
    Woodward's long awaited book is an attempt to construct a comprehensive account of causation explanation that applies to a wide variety of causal and explanatory claims in different areas of science and everyday life. The book engages some of the relevant literature from other disciplines, as Woodward weaves together examples, counterexamples, criticisms, defences, objections, and replies into a convincing defence of the core of his theory, which is that we can analyse causation by appeal to the notion of manipulation.
    Download  
     
    Export citation  
     
    Bookmark   314 citations  
  • (3 other versions)What has Natural Information to Do with Intentional Representation?Ruth Garrett Millikan - 2001 - In D. Walsh, Evolution, Naturalism and Mind. Cambridge University Press. pp. 105-125.
    "According to informational semantics, if it's necessary that a creature can't distinguish Xs from Ys, it follows that the creature can't have a concept that applies to Xs but not Ys." (Jerry Fodor, The Elm and the Expert, p.32).
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Probability and Random Processes.Geoffrey Grimmett & David Stirzaker - 2001 - Oxford University Press.
    A Markov chain is a random process with the property that, conditional on its present value, the future is independent of the past. The Chapman- Kolmogorov equations are derived, and used to explore the persistence and transience of states.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (2 other versions)Do the Laws of Physics State the Facts?Nancy Cartwright - 1983 - In How the laws of physics lie. New York: Oxford University Press.
    The facticity view of fundamental laws of physics takes them to state facts about reality. To preserve the facticity of laws in the face of complex phenomena with multiple intervening factors, composition of causes, often by vector addition, is invoked. However, this addition should be read only as a metaphor, for only the resultant force is real. The truth and the explanatory power of laws can both be preserved by viewing laws as describing causal powers that objects possess, but this (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Matthen and Ariew’s Obituary for Fitness: Reports of its Death have been Greatly Exaggerated. [REVIEW]Alexander Rosenberg & Frederic Bouchard - 2005 - Biology and Philosophy 20 (2-3):343-353.
    Philosophers of biology have been absorbed by the problem of defining evolutionary fitness since Darwin made it central to biological explanation. The apparent problem is obvious. Define fitness as some biologists implicitly do, in terms of actual survival and reproduction, and the principle of natural selection turns into an empty tautology: those organisms which survive and reproduce in larger numbers, survive and reproduce in larger numbers. Accordingly, many writers have sought to provide a definition for ‘fitness’ which avoid this outcome. (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • How to understand casual relations in natural selection: Reply to Rosenberg and Bouchard. [REVIEW]Mohan Matthen & André Ariew - 2005 - Biology and Philosophy 20 (2-3):355-364.
    In “Two Ways of Thinking About Fitness and Natural Selection” (Matthen and Ariew [2002]; henceforth “Two Ways”), we asked how one should think of the relationship between the various factors invoked to explain evolutionary change – selection, drift, genetic constraints, and so on. We suggested that these factors are not related to one another as “forces” are in classical mechanics. We think it incoherent, for instance, to think of natural selection and drift as separate and opposed “forces” in evolutionary change (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Probability: An Introduction.Geoffrey R. Grimmett - 1986 - Oxford University Press.
    A concise introduction to probability and random processes at first-degree level with exercises and problems.
    Download  
     
    Export citation  
     
    Bookmark   1 citation