Switch to: References

Citations of:

A propensity interpretation of probability

In Antony Eagle (ed.), Philosophy of Probability: Contemporary Readings. New York: Routledge (2010)

Add citations

You must login to add citations.
  1. Karl Popper: Philosophy of Science.Brendan Shea - 2011 - In James Fieser & Bradley Dowden (eds.), Internet Encyclopedia of Philosophy. Routledge.
    Karl Popper (1902-1994) was one of the most influential philosophers of science of the 20th century. He made significant contributions to debates concerning general scientific methodology and theory choice, the demarcation of science from non-science, the nature of probability and quantum mechanics, and the methodology of the social sciences. His work is notable for its wide influence both within the philosophy of science, within science itself, and within a broader social context. Popper’s early work attempts to solve the problem of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Propensities and probabilities.Nuel Belnap - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (3):593-625.
    Popper’s introduction of ‘‘propensity’’ was intended to provide a solid conceptual foundation for objective single-case probabilities. By considering the partly opposed contributions of Humphreys and Miller and Salmon, it is argued that when properly understood, propensities can in fact be understood as objective single-case causal probabilities of transitions between concrete events. The chief claim is that propensities are well-explicated by describing how they fit into the existing formal theory of branching space-times, which is simultaneously indeterministic and causal. Several problematic examples, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On Probabilities in Biology and Physics.Joseph Berkovitz & Philippe Huneman - 2015 - Erkenntnis 80 (S3):433-456.
    This volume focuses on various questions concerning the interpretation of probability and probabilistic reasoning in biology and physics. It is inspired by the idea that philosophers of biology and philosophers of physics who work on the foundations of their disciplines encounter similar questions and problems concerning the role and application of probability, and that interaction between the two communities will be both interesting and fruitful. In this introduction we present the background to the main questions that the volume focuses on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What does it take to establish that a world is uninhabited prior to exploitation? – A question of ethics as well as science.Erik Persson - 2014 - Challenges 5:224-238.
    If we find life on another world, it will be an extremely important discovery and we will have to take great care not to do anything that might endanger that life. If the life we find is sentient we will have moral obligations to that life. Whether it is sentient or not, we have a duty to ourselves to preserve it as a study object, and also because it would be commonly seen as valuable in its own right. In addition (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Propensity Interpretation of Probability: A Re-evaluation.Joseph Berkovitz - 2015 - Erkenntnis 80 (S3):629-711.
    Single-case and long-run propensity theories are among the main objective interpretations of probability. There have been various objections to these theories, e.g. that it is difficult to explain why propensities should satisfy the probability axioms and, worse, that propensities are at odds with these axioms, that the explication of propensities is circular and accordingly not informative, and that single-case propensities are metaphysical and accordingly non-scientific. We consider various propensity theories of probability and their prospects in light of these objections. We (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Theory and Reality : Metaphysics as Second Science.Staffan Angere - unknown
    Theory and Reality is about the connection between true theories and the world. A mathematical framefork for such connections is given, and it is shown how that framework can be used to infer facts about the structure of reality from facts about the structure of true theories, The book starts with an overview of various approaches to metaphysics. Beginning with Quine's programmatic "On what there is", the first chapter then discusses the perils involved in going from language to metaphysics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Representation and Invariance of Scientific Structures.Patrick Suppes - 2002 - CSLI Publications (distributed by Chicago University Press).
    An early, very preliminary edition of this book was circulated in 1962 under the title Set-theoretical Structures in Science. There are many reasons for maintaining that such structures play a role in the philosophy of science. Perhaps the best is that they provide the right setting for investigating problems of representation and invariance in any systematic part of science, past or present. Examples are easy to cite. Sophisticated analysis of the nature of representation in perception is to be found already (...)
    Download  
     
    Export citation  
     
    Bookmark   143 citations  
  • (1 other version)Comment la procrastination est-elle possible? Procrastination, souci de soi et identité personnelle.Christine Tappolet - 2013 - Repha 7:13-43.
    As common experience confirms, procrastination seems not only possible, but widespread. However, procrastination should not be taken for granted. Often, the procrastinator harms herself knowingly. It thus clearly seems that such a person lacks the self-concern that usually characterises us. After having spelled out what procrastination is, and having explored its main varieties, I consider the relation between procrastination and risk-taking. After this, I discuss the implications of this phenomenon for the debates about personal identity. The upshot, I argue, is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A critique of empiricist propensity theories.Mauricio Suárez - 2014 - European Journal for Philosophy of Science 4 (2):215-231.
    I analyse critically what I regard as the most accomplished empiricist account of propensities, namely the long run propensity theory developed by Donald Gillies . Empiricist accounts are distinguished by their commitment to the ‘identity thesis’: the identification of propensities and objective probabilities. These theories are intended, in the tradition of Karl Popper’s influential proposal, to provide an interpretation of probability that renders probability statements directly testable by experiment. I argue that the commitment to the identity thesis leaves empiricist theories, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Inference to the Best explanation.Peter Lipton - 2005 - In Martin Curd & Stathis Psillos (eds.), The Routledge Companion to Philosophy of Science. New York: Routledge. pp. 193.
    Science depends on judgments of the bearing of evidence on theory. Scientists must judge whether an observation or the result of an experiment supports, disconfirms, or is simply irrelevant to a given hypothesis. Similarly, scientists may judge that, given all the available evidence, a hypothesis ought to be accepted as correct or nearly so, rejected as false, or neither. Occasionally, these evidential judgments can be made on deductive grounds. If an experimental result strictly contradicts a hypothesis, then the truth of (...)
    Download  
     
    Export citation  
     
    Bookmark   306 citations  
  • Feminist Philosophy of Science.Lynn Hankinson Nelson - 2002 - In Peter K. Machamer & Michael Silberstein (eds.), The Blackwell guide to the philosophy of science. Malden, Mass.: Blackwell. pp. 312–331.
    This chapter contains sections titled: Highlights of Past Literature Current Work Future Work.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Single-case probabilities and content-neutral norms: a reply to Gigerenzer.Peter B. M. Vranas - 2001 - Cognition 81 (1):105-111.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Local Hidden Variables Underpinning of Entanglement and Teleportation.A. Kalev, A. Mann & M. Revzen - 2007 - Foundations of Physics 37 (1):125-143.
    Entangled states whose Wigner functions are non-negative may be viewed as being accounted for by local hidden variables (LHV). Recently, there were studies of Bell’s inequality violation (BIQV) for such states in conjunction with the well known theorem of Bell that precludes BIQV for theories that have LHV underpinning. We extend these studies to teleportation which is also based on entanglement. We investigate if, to what extent, and under what conditions may teleportation be accounted for via LHV theory. Our study (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Chance and Context.Toby Handfield & Alastair Wilson - 2014 - In Alastair Wilson (ed.), Chance and Temporal Asymmetry. Oxford: Oxford University Press.
    The most familiar philosophical conception of objective chance renders determinism incompatible with non-trivial chances. This conception – associated in particular with the work of David Lewis – is not a good fit with our use of the word ‘chance’ and its cognates in ordinary discourse. In this paper we show how a generalized framework for chance can reconcile determinism with non-trivial chances, and provide for a more charitable interpretation of ordinary chance-talk. According to our proposal, variation in an admissible ‘evidence (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Probabilities in Statistical Mechanics.Wayne C. Myrvold - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 573-600.
    This chapter will review selected aspects of the terrain of discussions about probabilities in statistical mechanics (with no pretensions to exhaustiveness, though the major issues will be touched upon), and will argue for a number of claims. None of the claims to be defended is entirely original, but all deserve emphasis. The first, and least controversial, is that probabilistic notions are needed to make sense of statistical mechanics. The reason for this is the same reason that convinced Maxwell, Gibbs, and (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Conditional probability from an ontological point of view.Rani Lill Anjum, Johan Arnt Myrstad & Stephen Mumford - manuscript
    This paper argues that the technical notion of conditional probability, as given by the ratio analysis, is unsuitable for dealing with our pretheoretical and intuitive understanding of both conditionality and probability. This is an ontological account of conditionals that include an irreducible dispositional connection between the antecedent and consequent conditions and where the conditional has to be treated as an indivisible whole rather than compositional. The relevant type of conditionality is found in some well-defined group of conditional statements. As an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Tendency Theory of Causation.Daniel von Wachter - manuscript
    A theory of causation with ‘tendencies’ as causal con- nections is proposed. Not, however, as ‘necessary connec- tions’: causes are not sufficient, they do not necessitate their effects. The theory is not an analysis of the concept of causation, but a description of what is the case in typical cases of causation. Therefore it does not strictly contradict any analysis of the concept of causation, not even reduct- ive ones. It would even be supported by a counterfactual or a probabilistic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Propensity Interpretation of Fitness and the Propensity Interpretation of Probability.Isabelle Drouet & Francesca Merlin - 2015 - Erkenntnis 80 (S3):457-468.
    The paper provides a new critical perspective on the propensity interpretation of fitness, by investigating its relationship to the propensity interpretation of probability. Two main conclusions are drawn. First, the claim that fitness is a propensity cannot be understood properly: fitness is not a propensity in the sense prescribed by the propensity interpretation of probability. Second, this interpretation of probability is inessential for explanations proposed by the PIF in evolutionary biology. Consequently, interpreting the probabilistic dimension of fitness in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Potentiality and Possibility.Barbara Vetter - 2010 - Dissertation, Oxford
    In this thesis, I develop a nonreductive and general conception of potentiality, and explore the prospects of a realist account of possibility based on this account of potentiality. Potentialities are properties of individual objects; they include dispositions such as fragility and abilities such as the ability to play the piano. Potentialities are individuated by their manifestation alone. In order to provide a unified account of potentialities, I argue in chapter 2 that dispositions, contrary to philosophical orthodoxy, are best understood in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Probabilities as Ratios of Ranges in Initial-State Spaces.Jacob Rosenthal - 2012 - Journal of Logic, Language and Information 21 (2):217-236.
    A proposal for an objective interpretation of probability is introduced and discussed: probabilities as deriving from ranges in suitably structured initial-state spaces. Roughly, the probability of an event on a chance trial is the proportion of initial states that lead to the event in question within the space of all possible initial states associated with this type of experiment, provided that the proportion is approximately the same in any not too small subregion of the space. This I would like to (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Deterministic Probability: Neither chance nor credence.Aidan Lyon - 2011 - Synthese 182 (3):413-432.
    Some have argued that chance and determinism are compatible in order to account for the objectivity of probabilities in theories that are compatible with determinism, like Classical Statistical Mechanics (CSM) and Evolutionary Theory (ET). Contrarily, some have argued that chance and determinism are incompatible, and so such probabilities are subjective. In this paper, I argue that both of these positions are unsatisfactory. I argue that the probabilities of theories like CSM and ET are not chances, but also that they are (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)The Place of Probability in Science: In Honor of Ellery Eells (1953-2006).Ellery Eells & James H. Fetzer (eds.) - 2010 - Springer.
    To clarify and illuminate the place of probability in science Ellery Eells and James H. Fetzer have brought together some of the most distinguished philosophers ...
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Physics and Causation.Michael Esfeld - 2010 - Foundations of Physics 40 (9-10):1597-1610.
    The paper makes a case for there being causation in the form of causal properties or causal structures in the domain of fundamental physics. That case is built in the first place on an interpretation of quantum theory in terms of state reductions so that there really are both entangled states and classical properties, GRW being the most elaborate physical proposal for such an interpretation. I then argue that the interpretation that goes back to Everett can also be read in (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Causality and causal modelling in the social sciences.Federica Russo - 2009 - Springer, Dordrecht.
    The anti-causal prophecies of last century have been disproved. Causality is neither a ‘relic of a bygone’ nor ‘another fetish of modern science’; it still occupies a large part of the current debate in philosophy and the sciences. This investigation into causal modelling presents the rationale of causality, i.e. the notion that guides causal reasoning in causal modelling. It is argued that causal models are regimented by a rationale of variation, nor of regularity neither invariance, thus breaking down the dominant (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Causality.Jessica M. Wilson - 2005 - In Sahotra Sarkar & Jessica Pfeifer (eds.), The Philosophy of Science: An Encyclopedia. New York: Routledge. pp. 90--100.
    Arguably no concept is more fundamental to science than that of causality, for investigations into cases of existence, persistence, and change in the natural world are largely investigations into the causes of these phenomena. Yet the metaphysics and epistemology of causality remain unclear. For example, the ontological categories of the causal relata have been taken to be objects (Hume 1739), events (Davidson 1967), properties (Armstrong 1978), processes (Salmon 1984), variables (Hitchcock 1993), and facts (Mellor 1995). (For convenience, causes and effects (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How Do Natural Selection and Random Drift Interact?Marshall Abrams - 2007 - Philosophy of Science 74 (5):666-679.
    One controversy about the existence of so called evolutionary forces such as natural selection and random genetic drift concerns the sense in which such “forces” can be said to interact. In this paper I explain how natural selection and random drift can interact. In particular, I show how population-level probabilities can be derived from individual-level probabilities, and explain the sense in which natural selection and drift are embodied in these population-level probabilities. I argue that whatever causal character the individual-level probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Propensities in a non-deterministic physics.N. Gisin - 1991 - Synthese 89 (2):287 - 297.
    Propensities are presented as a generalization of classical determinism. They describe a physical reality intermediary between Laplacian determinism and pure randomness, such as in quantum mechanics. They are characterized by the fact that their values are determined by the collection of all actual properties. It is argued that they do not satisfy Kolmogorov axioms; other axioms are proposed.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Bayesian statistics and biased procedures.Ronald N. Giere - 1969 - Synthese 20 (3):371 - 387.
    A comparison of Neyman's theory of interval estimation with the corresponding subjective Bayesian theory of credible intervals shows that the Bayesian approach to the estimation of statistical parameters allows experimental procedures which, from the orthodox objective viewpoint, are clearly biased and clearly inadmissible. This demonstrated methodological difference focuses attention on the key difference in the two general theories, namely, that the orthodox theory is supposed to provide a known average frequency of successful estimates, whereas the Bayesian account provides only a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Pragmatic probability.Newton C. A. Costa - 1986 - Erkenntnis 25 (2):141-162.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The straight and narrow rule of induction: A reply to dr Bub and mr Radner.David Miller - 1968 - British Journal for the Philosophy of Science 19 (2):145-152.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Interpretations of probability in evolutionary theory.Roberta L. Millstein - 2003 - Philosophy of Science 70 (5):1317-1328.
    Evolutionary theory (ET) is teeming with probabilities. Probabilities exist at all levels: the level of mutation, the level of microevolution, and the level of macroevolution. This uncontroversial claim raises a number of contentious issues. For example, is the evolutionary process (as opposed to the theory) indeterministic, or is it deterministic? Philosophers of biology have taken different sides on this issue. Millstein (1997) has argued that we are not currently able answer this question, and that even scientific realists ought to remain (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The aharonov-Bohm effect and the reality of wave packets.Chuang Liu - 1994 - British Journal for the Philosophy of Science 45 (4):977-1000.
    The objective of this paper is to show that, instead of quantum probabilities, wave packets are physically real. First, Cartwright's recent argument for the reality of quantum probabilities is criticized. Then, the notion of ‘physically real’ is precisely defined and the difference between wave functions and quantum probabilities clarified. Being thus prepared, some strong reasons are discussed for considering the wave packet to be physically real. Finding the reasons inconclusive, I explain how the Aharonov—Bohm effect delivers the final punch. I (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Theories of probability.Colin Howson - 1995 - British Journal for the Philosophy of Science 46 (1):1-32.
    My title is intended to recall Terence Fine's excellent survey, Theories of Probability [1973]. I shall consider some developments that have occurred in the intervening years, and try to place some of the theories he discussed in what is now a slightly longer perspective. Completeness is not something one can reasonably hope to achieve in a journal article, and any selection is bound to reflect a view of what is salient. In a subject as prone to dispute as this, there (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The reference class problem is your problem too.Alan Hájek - 2007 - Synthese 156 (3):563--585.
    The reference class problem arises when we want to assign a probability to a proposition (or sentence, or event) X, which may be classified in various ways, yet its probability can change depending on how it is classified. The problem is usually regarded as one specifically for the frequentist interpretation of probability and is often considered fatal to it. I argue that versions of the classical, logical, propensity and subjectivist interpretations also fall prey to their own variants of the reference (...)
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Twenty-one arguments against propensity analyses of probability.Antony Eagle - 2004 - Erkenntnis 60 (3):371–416.
    I argue that any broadly dispositional analysis of probability will either fail to give an adequate explication of probability, or else will fail to provide an explication that can be gainfully employed elsewhere (for instance, in empirical science or in the regulation of credence). The diversity and number of arguments suggests that there is little prospect of any successful analysis along these lines.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Genericity and Inductive Inference.Henry Ian Schiller - 2023 - Philosophy of Science:1-18.
    We are often justified in acting on the basis of evidential confirmation. I argue that such evidence supports belief in non-quantificational generic generalizations, rather than universally quantified generalizations. I show how this account supports, rather than undermines, a Bayesian account of confirmation. Induction from confirming instances of a generalization to belief in the corresponding generic is part of a reasoning instinct that is typically (but not always) correct, and allows us to approximate the predictions that formal epistemology would make.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Complex Nexus of Evolutionary Fitness.Mauricio Suárez - 2022 - European Journal for Philosophy of Science 12 (1):1-26.
    The propensity nature of evolutionary fitness has long been appreciated and is nowadays amply discussed. The discussion has, however, on occasion followed long standing conflations in the philosophy of probability literature between propensities, probabilities, and frequencies. In this paper, I apply a more recent conception of propensities in modelling practice to some of the key issues, regarding the mathematical representation of fitness and how it may be regarded as explanatory. The ensuing complex nexus of fitness emphasises the distinction between biological (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Battle in the Statistics Wars: a simulation-based comparison of Bayesian, Frequentist and Williamsonian methodologies.Mantas Radzvilas, William Peden & Francesco De Pretis - 2021 - Synthese 199 (5-6):13689-13748.
    The debates between Bayesian, frequentist, and other methodologies of statistics have tended to focus on conceptual justifications, sociological arguments, or mathematical proofs of their long run properties. Both Bayesian statistics and frequentist (“classical”) statistics have strong cases on these grounds. In this article, we instead approach the debates in the “Statistics Wars” from a largely unexplored angle: simulations of different methodologies’ performance in the short to medium run. We conducted a large number of simulations using a straightforward decision problem based (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Astrobiologins filosofi - Några frågor rörande teoretisk filosofi.Erik Persson - 2021 - Filosofiska Notiser 8 (2):3-23.
    Denna artikel är den första i en serie om två artiklar som introducerar astrobiologins filosofi. Detta är ett förhållandevis nytt och i Sverige nästan okänt forskningsfält som dock befinner sig i snabb tillväxt internationellt. Ämnet presenteras här i form av exempel på några centrala frågeställningar inom området. I den här artikeln presenteras några frågeställningar hemmahörande i teoretisk filosofi.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Ontic Probability Interpretation of Quantum Theory - Part III: Schrödinger’s Cat and the ‘Basis’ and ‘Measurement’ Pseudo-Problems (2nd edition).Felix Alba-Juez - manuscript
    Most of us are either philosophically naïve scientists or scientifically naïve philosophers, so we misjudged Schrödinger’s “very burlesque” portrait of Quantum Theory (QT) as a profound conundrum. The clear signs of a strawman argument were ignored. The Ontic Probability Interpretation (TOPI) is a metatheory: a theory about the meaning of QT. Ironically, equating Reality with Actuality cannot explain actual data, justifying the century-long philosophical struggle. The actual is real but not everything real is actual. The ontic character of the Probable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Refined Propensity Account for GRW Theory.Lorenzo Lorenzetti - 2021 - Foundations of Physics 51 (2):1-20.
    Spontaneous collapse theories of quantum mechanics turn the usual Schrödinger equation into a stochastic dynamical law. In particular, in this paper, I will focus on the GRW theory. Two philosophical issues that can be raised about GRW concern (i) the ontology of the theory, in particular the nature of the wave function and its role within the theory, and (ii) the interpretation of the objective probabilities involved in the dynamics of the theory. During the last years, it has been claimed (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Darwinism as a Theory for Finite Beings.Marcel Weber - 2005 - In Vittorio G. Hösle & Christian F. Illies (eds.), Darwinism and Philosophy. pp. 275-297.
    Darwin famously held that his use of the term "chance" in evolutionary theory merely "serves to acknowledge plainly our ignorance of the causes of each particular variation". Is this a tenable view today? Or should we revise our thinking about chance in evolution in light of the more advanced, quantitative models of Neo-Darwinian theory, which make substantial use of statistical reasoning and the concept of probability? Is determinism still a viable metaphysical doctrine about biological reality after the quantum revolution in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Interpretation Misunderstandings about Elementary Quantum Mechanics.Federico G. Lopez Armengol & Gustavo E. Romero - 2017 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 7:55--60.
    Quantum Mechanics is a fundamental physical theory about atomic-scale processes. It was built between 1920 and 1940 by the most distinguished physicists of that time. The accordance between the predictions of the theory and experimental results is remarkable. The physical interpretation of its mathematical constructs, however, raised unprecedented controversies. Ontological, semantic, and epistemic vagueness abound in the orthodox interpretations and have resulted in serious misunderstandings that are often repeated in textbooks and elsewhere. In this work, we identify, criticize, and clarify (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Ontic Probability Interpretation of Quantum Theory - Part I: The Meaning of Einstein's Incompleteness Claim (2nd edition).Felix Alba-Juez - manuscript
    Ignited by Einstein and Bohr a century ago, the philosophical struggle about Reality is yet unfinished, with no signs of a swift resolution. Despite vast technological progress fueled by the iconic Einstein/Podolsky/Rosen paper (EPR) [1] [2] [3], the intricate link between ontic and epistemic aspects of Quantum Theory (QT) has greatly hindered our grip on Reality and further progress in physical theory. Fallacies concealed by tortuous logical negations made EPR comprehension much harder than it could have been had Einstein written (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The distinction between falsification and refutation in the demarcation problem of Karl Popper.Nicolae Sfetcu - 2019 - Bucharest, Romania: MultiMedia Publishing.
    Despite the criticism of Karl Popper's falsifiability theory for the demarcation between science and non-science, mainly pseudo-science, this criterion is still very useful, and perfectly valid after it was perfected by Popper and his followers. Moreover, even in his original version, considered by Lakatos as "dogmatic", Popper did not assert that this methodology is an absolute demarcation criterion: a single counter-example is not enough to falsify a theory; a theory can legitimately be saved from falsification by introducing an auxiliary hypothesis. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Backwards Causation and the Chancy Past.John Cusbert - 2018 - Mind 127 (505):1-33.
    I argue that the past can be objectively chancy in cases of backwards causation, and defend a view of chance that allows for this. Using a case, I argue against the popular temporal view of chance, according to which chances are defined relative to times, and all chancy events must lie in the future. I then state and defend the causal view of chance, according to which chances are defined relative to causal histories, and all chancy events must lie causally (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Laws and chances in statistical mechanics.Eric Winsberg - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):872-888.
    Statistical mechanics involves probabilities. At the same time, most approaches to the foundations of statistical mechanics--programs whose goal is to understand the macroscopic laws of thermal physics from the point of view of microphysics--are classical; they begin with the assumption that the underlying dynamical laws that govern the microscopic furniture of the world are deterministic. This raises some potential puzzles about the proper interpretation of these probabilities.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Probability and Manipulation: Evolution and Simulation in Applied Population Genetics.Marshall Abrams - 2015 - Erkenntnis 80 (3):519-549.
    I define a concept of causal probability and apply it to questions about the role of probability in evolutionary processes. Causal probability is defined in terms of manipulation of patterns in empirical outcomes by manipulating properties that realize objective probabilities. The concept of causal probability allows us see how probabilities characterized by different interpretations of probability can share a similar causal character, and does so in such way as to allow new inferences about relationships between probabilities realized in different chance (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations