Switch to: Citations

References in:

Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics

In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press (2020)

Add references

You must login to add references.
  1. On the Metaphysics of Quantum Mechanics.Valia Allori - 2013 - In Soazig Lebihan (ed.), La philosophie de la physique: d'aujourd'hui a demain. Editions Vuibert.
    What is quantum mechanics about? The most natural way to interpret quantum mechanics realistically as a theory about the world might seem to be what is called wave function ontology: the view according to which the wave function mathematically represents in a complete way fundamentally all there is in the world. Erwin Schroedinger was one of the first proponents of such a view, but he dismissed it after he realized it led to macroscopic superpositions (if the wave function evolves in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Scientific Realism: How Science Tracks Truth.Stathis Psillos - 1999 - New York: Routledge.
    Scientific realism is the optimistic view that modern science is on the right track: that the world really is the way our best scientific theories describe it. In his book, Stathis Psillos gives us a detailed and comprehensive study which restores the intuitive plausibility of scientific realism. We see that throughout the twentieth century, scientific realism has been challenged by philosophical positions from all angles: from reductive empiricism, to instrumentalism and to modern sceptical empiricism. _Scientific Realism_ explains that the history (...)
    Download  
     
    Export citation  
     
    Bookmark   578 citations  
  • Philosophy and the Scientific Image Of Man.Wilfrid Sellars - 1963 - In Science, Perception and Reality. New York,: Humanities Press.
    Download  
     
    Export citation  
     
    Bookmark   295 citations  
  • Worlds in the Everett interpretation.David Wallace - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):637-661.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Bohmian dispositions.Mauricio Suárez - 2015 - Synthese 192 (10):3203-3228.
    This paper argues for a broadly dispositionalist approach to the ontology of Bohmian mechanics . It first distinguishes the ‘minimal’ and the ‘causal’ versions of Bohm’s theory, and then briefly reviews some of the claims advanced on behalf of the ‘causal’ version by its proponents. A number of ontological or interpretive accounts of the wave function in BM are then addressed in detail, including configuration space, multi-field, nomological, and dispositional approaches. The main objection to each account is reviewed, namely the (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Bohmian mechanics without wave function ontology.Albert Solé - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):365-378.
    In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics is better formulated (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Theory of (Exclusively) Local Beables.Travis Norsen - 2010 - Foundations of Physics 40 (12):1858-1884.
    It is shown how, starting with the de Broglie–Bohm pilot-wave theory, one can construct a new theory of the sort envisioned by several of QM’s founders: a Theory of Exclusively Local Beables (TELB). In particular, the usual quantum mechanical wave function (a function on a high-dimensional configuration space) is not among the beables posited by the new theory. Instead, each particle has an associated “pilot-wave” field (living in physical space). A number of additional fields (also fields on physical space) maintain (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Finding the world in the wave function: some strategies for solving the macro-object problem.Alyssa Ney - 2020 - Synthese 197 (10):4227-4249.
    Realists wanting to capture the facts of quantum entanglement in a metaphysical interpretation find themselves faced with several options: to grant some species of fundamental nonseparability, adopt holism, or to view localized spacetime systems as ultimately reducible to a higher-dimensional entity, the quantum state or wave function. Those adopting the latter approach and hoping to view the macroscopic world as grounded in the quantum wave function face the macro-object problem. The challenge is to articulate the metaphysical relation obtaining between three-dimensional (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Wave Function Ontology.Bradley Monton - 2002 - Synthese 130 (2):265-277.
    I argue that the wave function ontology for quantum mechanics is an undesirable ontology. This ontology holds that the fundamental space in which entities evolve is not three-dimensional, but instead 3N-dimensional, where N is the number of particles standardly thought to exist in three-dimensional space. I show that the state of three-dimensional objects does not supervene on the state of objects in 3N-dimensional space. I also show that the only way to guarantee the existence of the appropriate mental states in (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Three measurement problems.Tim Maudlin - 1995 - Topoi 14 (1):7-15.
    The aim of this essay is to distinguish and analyze several difficulties confronting attempts to reconcile the fundamental quantum mechanical dynamics with Born''s rule. It is shown that many of the proposed accounts of measurement fail at least one of the problems. In particular, only collapse theories and hidden variables theories have a chance of succeeding, and, of the latter, the modal interpretations fail. Any real solution demands new physics.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Life in configuration space.Peter J. Lewis - 2004 - British Journal for the Philosophy of Science 55 (4):713-729.
    This paper investigates the tenability of wavefunction realism, according to which the quantum mechanical wavefunction is not just a convenient predictive tool, but is a real entity figuring in physical explanations of our measurement results. An apparent difficulty with this position is that the wavefunction exists in a many-dimensional configuration space, whereas the world appears to us to be three-dimensional. I consider the arguments that have been given for and against the tenability of wavefunction realism, and note that both the (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Interpreting spontaneous collapse theories.Peter J. Lewis - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):165-180.
    Spontaneous collapse theories of quantum mechanics require an interpretation if their claim to solve the measurement problem is to be vindicated. The most straightforward interpretation rule, the fuzzy link, generates a violation of common sense known as the counting anomaly. Recently, a consensus has developed that the mass density link provides an appropriate interpretation of spontaneous collapse theories that avoids the counting anomaly. In this paper, I argue that the mass density link violates common sense in just as striking a (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Interpreting spontaneous collapse theories.Peter J. Lewis - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):165-180.
    Spontaneous collapse theories of quantum mechanics require an interpretation if their claim to solve the measurement problem is to be vindicated. The most straightforward interpretation rule, the fuzzy link, generates a violation of common sense known as the counting anomaly. Recently, a consensus has developed that the mass density link provides an appropriate interpretation of spontaneous collapse theories that avoids the counting anomaly. In this paper, I argue that the mass density link violates common sense in just as striking a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • GRW: A case study in quantum ontology.Peter J. Lewis - 2006 - Philosophy Compass 1 (2):224–244.
    This article provides an overview of the philosophical literature on the GRW theory of quantum mechanics, and argues for a particular position regarding that literature. Much of the literature is ontological; it attempts to defend a conception of what the world is like according to the GRW theory against perceived competitors. I argue that there is no real debate here, since these supposedly conflicting positions are better regarded as alternative and compatible ways of describing the world of the GRW theory.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The advancement of science: science without legend, objectivity without illusions.Philip Kitcher - 1993 - New York: Oxford University Press.
    During the last three decades, reflections on the growth of scientific knowledge have inspired historians, sociologists, and some philosophers to contend that scientific objectivity is a myth. In this book, Kitcher attempts to resurrect the notions of objectivity and progress in science by identifying both the limitations of idealized treatments of growth of knowledge and the overreactions to philosophical idealizations. Recognizing that science is done not by logically omniscient subjects working in isolation, but by people with a variety of personal (...)
    Download  
     
    Export citation  
     
    Bookmark   741 citations  
  • Emergent spacetime and empirical (in) coherence.Nick Huggett & Christian Wüthrich - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):276-285.
    Numerous approaches to a quantum theory of gravity posit fundamental ontologies that exclude spacetime, either partially or wholly. This situation raises deep questions about how such theories could relate to the empirical realm, since arguably only entities localized in spacetime can ever be observed. Are such entities even possible in a theory without fundamental spacetime? How might they be derived, formally speaking? Moreover, since by assumption the fundamental entities cannot be smaller than the derived and so cannot ‘compose’ them in (...)
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • The Wave-Function as a Multi-Field.Mario Hubert & Davide Romano - 2018 - European Journal for Philosophy of Science 8 (3):521-537.
    It is generally argued that if the wave-function in the de Broglie–Bohm theory is a physical field, it must be a field in configuration space. Nevertheless, it is possible to interpret the wave-function as a multi-field in three-dimensional space. This approach hasn’t received the attention yet it really deserves. The aim of this paper is threefold: first, we show that the wave-function is naturally and straightforwardly construed as a multi-field; second, we show why this interpretation is superior to other interpretations (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • One world, one beable.Craig Callender - 2015 - Synthese 192 (10):3153-3177.
    Is the quantum state part of the furniture of the world? Einstein found such a position indigestible, but here I present a different understanding of the wavefunction that is easy to stomach. First, I develop the idea that the wavefunction is nomological in nature, showing how the quantum It or Bit debate gets subsumed by the corresponding It or Bit debate about laws of nature. Second, I motivate the nomological view by casting quantum mechanics in a “classical” formalism (Hamilton–Jacobi theory) (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Quantum states for primitive ontologists: A case study.Gordon Belot - 2012 - European Journal for Philosophy of Science 2 (1):67-83.
    Under so-called primitive ontology approaches, in fully describing the history of a quantum system, one thereby attributes interesting properties to regions of spacetime. Primitive ontology approaches, which include some varieties of Bohmian mechanics and spontaneous collapse theories, are interesting in part because they hold out the hope that it should not be too difficult to make a connection between models of quantum mechanics and descriptions of histories of ordinary macroscopic bodies. But such approaches are dualistic, positing a quantum state as (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • The Quantum Mechanics of Minds and Worlds.Simon Saunders - 2001 - Mind 110 (440):1039-1043.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • The Wave Function: Essays on the Metaphysics of Quantum Mechanics.Alyssa Ney & David Albert (eds.) - 2013 - , US: Oxford University Press USA.
    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? Does quantum mechanics support the existence of any other fundamental entities, e.g. particles? What is the nature of the fundamental space of quantum mechanics? What is the relationship between the fundamental ontology of quantum mechanics and ordinary, macroscopic objects like tables, chairs, and (...)
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • The Quantum Mechanics of Minds and Worlds.Jeffrey A. Barrett - 1999 - Oxford, GB: Oxford University Press UK.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s. The standard theory of quantum mechanics is in one sense the most successful physical theory ever, predicting the behaviour of the basic constituents of all physical things; no other theory has ever made such accurate empirical predictions. However, if one tries to understand the theory as providing a complete and accurate framework for the description of the behaviour of all physical (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • After Physics.David Z. Albert - 2015 - Cambridge, Massachusetts: Harvard University Press.
    Here the philosopher and physicist David Z Albert argues, among other things, that the difference between past and future can be understood as a mechanical phenomenon of nature and that quantum mechanics makes it impossible to present the entirety of what can be said about the world as a narrative of “befores” and “afters.”.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • The Structure of the World: Metaphysics and Representation.Steven French - 2014 - New York: Oxford University Press.
    Steven French articulates and defends the bold claim that there are no objects in the world. He draws on metaphysics and philosophy of science to argue for structural realism--the position that we live in a world of structures--and defends a form of eliminativism about objects that sets laws and symmetry principles at the heart of ontology.
    Download  
     
    Export citation  
     
    Bookmark   215 citations  
  • The Conscious Mind: In Search of a Fundamental Theory (2nd edition).David J. Chalmers - 1996 - Oxford University Press.
    The book is an extended study of the problem of consciousness. After setting up the problem, I argue that reductive explanation of consciousness is impossible , and that if one takes consciousness seriously, one has to go beyond a strict materialist framework. In the second half of the book, I move toward a positive theory of consciousness with fundamental laws linking the physical and the experiential in a systematic way. Finally, I use the ideas and arguments developed earlier to defend (...)
    Download  
     
    Export citation  
     
    Bookmark   2044 citations  
  • Scientific realism: how science tracks truth.Stathis Psillos - 1999 - New York: Routledge.
    Scientific Realism is the optimistic view that modern science is on the right track: that the world really is the way our best scientific theories describe it to be. In his book, Stathis Psillos gives us a detailed and comprehensive study, which restores the intuitive plausibility of scientific realism. We see that throughout the twentieth century, scientific realism has been challenged by philosophical positions from all angles: from reductive empiricism, to instrumentalism and modern skeptical empiricism. Scientific Realism explains that the (...)
    Download  
     
    Export citation  
     
    Bookmark   661 citations  
  • Quantum metaphysics.Peter Forrest - 1988 - New York, NY, USA: Blackwell.
    The book comprises an enquiry into what quantum theory shows us about the world. Its aim is to sort out which metaphysical speculations are tenable and which are not. After an initial discussion of realism, the author provides a non-technical exposition of quantum theory and a criticism of the proposal that quantum theory should make us revise our beliefs about logic. He then discusses the various problems and puzzles which make quantum theory both interesting and perplexing. The text defends three (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Elementary Quantum Metaphysics.David Albert - 1996 - In J. T. Cushing, Arthur Fine & Sheldon Goldstein (eds.), Bohmian Mechanics and Quantum theory: An Appraisal. Kluwer Academic Publishers. pp. 277-284.
    Once upon a time, the twentieth-century investigations of the behaviors of sub-atomic particles were thought to have established that there can be no such thing as an objective, observer-independent, scientifically realist, empirically adequate picture of the physical world.
    Download  
     
    Export citation  
     
    Bookmark   196 citations  
  • The “Structure” of Physics.Jill North - 2009 - Journal of Philosophy 106 (2):57-88.
    We are used to talking about the “structure” posited by a given theory of physics, such as the spacetime structure of relativity. What is “structure”? What does the mathematical structure used to formulate a theory tell us about the physical world according to the theory? What if there are different mathematical formulations of a given theory? Do different formulations posit different structures, or are they merely notational variants? I consider the case of Lagrangian and Hamiltonian classical mechanics. I argue that, (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • The Structure of a Quantum World.Jill North - 2013 - In Alyssa Ney & David Albert (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press. pp. 184-202.
    I argue that the fundamental space of a quantum mechanical world is the wavefunction's space. I argue for this using some very general principles that guide our inferences to the fundamental nature of a world, for any fundamental physical theory. I suggest that ordinary three-dimensional space exists in such a world, but is non-fundamental; it emerges from the fundamental space of the wavefunction.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Philosophy and the scientific image of man.Wilfrid S. Sellars - 1962 - In Robert Colodny (ed.), Science, Perception, and Reality. Humanities Press/Ridgeview. pp. 35-78.
    The aim of philosophy, abstractly formulated, is to understand how things in the broadest possible sense of the term hang together in the broadest possible sense of the term. Under 'things in the broadest possible sense' I include such radically different items as not only 'cabbages and kings', but numbers and duties, possibilities and finger snaps, aesthetic experience and death. To achieve success in philosophy would be, to use a contemporary turn of phrase, to 'know one's way around' with respect (...)
    Download  
     
    Export citation  
     
    Bookmark   314 citations  
  • Against 3N-Dimensional Space.Bradley Monton - 2013 - In David Albert Alyssa Ney (ed.), The Wave Function: Essays in the Metaphysics of Quantum Mechanics.
    I argue that space has three dimensions, and quantum mechanics does not show otherwise. Specifically, I argue that the mathematical wave function of quantum mechanics corresponds to a property that an N-particle system has in three-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Reality and the role of the wave function in quantum theory.Sheldon Goldstein & Nino Zanghi - unknown
    The most puzzling issue in the foundations of quantum mechanics is perhaps that of the status of the wave function of a system in a quantum universe. Is the wave function objective or subjective? Does it represent the physical state of the system or merely our information about the system? And if the former, does it provide a complete description of the system or only a partial description? We shall address these questions here mainly from a Bohmian perspective, and shall (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • ”Relative state’ formulation of quantum mechanics.Hugh Everett - 1957 - Reviews of Modern Physics 29 (3):454--462.
    Download  
     
    Export citation  
     
    Bookmark   292 citations  
  • 'Relative State' Formulation of Quantum Mechanics.Hugh Everett - 1957 - Reviews of Modern Physics 29 (3):454-462.
    Download  
     
    Export citation  
     
    Bookmark   256 citations  
  • Dimension and Illusion.Peter J. Lewis - unknown
    The world looks three-dimensional unless one looks closely, when it looks 3N-dimensional. But which appearance is veridical, and which the illusion? Albert contends that the three-dimensionality of the everyday world is illusory, and that 3N-dimensional wavefunction one discerns in quantum phenomena is the reality behind the illusion. What I try to do here is to argue for the converse of Albert's position; the world really is three dimensional, and the 3N-dimensional appearance of quantum phenomena is the theoretical analog of an (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Ontological Reduction and the Wave Function Ontology.Alyssa Ney - 2013 - In Alyssa Ney & David Z. Albert (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press. pp. 168-183.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • A Relativistic Version of the Ghirardi–Rimini–Weber Model.Roderich Tumulka - 2006 - Journal of Statistical Physics 125:821-840.
    Download  
     
    Export citation  
     
    Bookmark   96 citations