Switch to: Citations

Add references

You must login to add references.
  1. Patterns of compact cardinals.Arthur W. Apter - 1997 - Annals of Pure and Applied Logic 89 (2-3):101-115.
    We show relative to strong hypotheses that patterns of compact cardinals in the universe, where a compact cardinal is one which is either strongly compact or supercompact, can be virtually arbitrary. Specifically, we prove if V “ZFC + Ω is the least inaccessible limit of measurable limits of supercompact cardinals + ƒ : Ω → 2 is a function”, then there is a partial ordering P V so that for , There is a proper class of compact cardinals + If (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Supercompactness and Measurable Limits of Strong Cardinals.Arthur W. Apter - 2001 - Journal of Symbolic Logic 66 (2):629-639.
    In this paper, two theorems concerning measurable limits of strong cardinals and supercompactness are proven. This generalizes earlier work, both individual and joint with Shelah.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fragile measurability.Joel Hamkins - 1994 - Journal of Symbolic Logic 59 (1):262-282.
    Laver [L] and others [G-S] have shown how to make the supercompactness or strongness of κ indestructible by a wide class of forcing notions. We show, alternatively, how to make these properties fragile. Specifically, we prove that it is relatively consistent that any forcing which preserves $\kappa^{<\kappa}$ and κ+, but not P(κ), destroys the measurability of κ, even if κ is initially supercompact, strong, or if I1(κ) holds. Obtained as an application of some general lifting theorems, this result is an (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Indestructibility and the level-by-level agreement between strong compactness and supercompactness.Arthur W. Apter & Joel David Hamkins - 2002 - Journal of Symbolic Logic 67 (2):820-840.
    Can a supercompact cardinal κ be Laver indestructible when there is a level-by-level agreement between strong compactness and supercompactness? In this article, we show that if there is a sufficiently large cardinal above κ, then no, it cannot. Conversely, if one weakens the requirement either by demanding less indestructibility, such as requiring only indestructibility by stratified posets, or less level-by-level agreement, such as requiring it only on measure one sets, then yes, it can.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)On strong compactness and supercompactness.Telis K. Menas - 1975 - Annals of Mathematical Logic 7 (4):327-359.
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • Failure of GCH and the level by level equivalence between strong compactness and supercompactness.Arthur W. Apter - 2003 - Mathematical Logic Quarterly 49 (6):587.
    We force and obtain three models in which level by level equivalence between strong compactness and supercompactness holds and in which, below the least supercompact cardinal, GCH fails unboundedly often. In two of these models, GCH fails on a set having measure 1 with respect to certain canonical measures. There are no restrictions in all of our models on the structure of the class of supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)[Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • (1 other version)The least measurable can be strongly compact and indestructible.Arthur W. Apter & Moti Gitik - 1998 - Journal of Symbolic Logic 63 (4):1404-1412.
    We show the consistency, relative to a supercompact cardinal, of the least measurable cardinal being both strongly compact and fully Laver indestructible. We also show the consistency, relative to a supercompact cardinal, of the least strongly compact cardinal being somewhat supercompact yet not completely supercompact and having both its strong compactness and degree of supercompactness fully Laver indestructible.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Identity crises and strong compactness : II. Strong cardinals.Arthur W. Apter & James Cummings - 2001 - Archive for Mathematical Logic 40 (1):25-38.
    . From a proper class of supercompact cardinals, we force and obtain a model in which the proper classes of strongly compact and strong cardinals precisely coincide. In this model, it is the case that no strongly compact cardinal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa$\end{document} is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $2^\kappa = \kappa^+$\end{document} supercompact.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
    The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal κ, for example, becomes fully indestructible by <κ-directed closed forcing; a strong cardinal κ becomes indestructible by κ-strategically closed forcing; and a strongly compact cardinal κ becomes indestructible by, among others, the forcing to (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • (1 other version)Identity crises and strong compactness.Arthur W. Apter & James Cummings - 2000 - Journal of Symbolic Logic 65 (4):1895-1910.
    Combining techniques of the first author and Shelah with ideas of Magidor, we show how to get a model in which, for fixed but arbitrary finite n, the first n strongly compact cardinals κ 1 ,..., κ n are so that κ i for i = 1,..., n is both the i th measurable cardinal and κ + i supercompact. This generalizes an unpublished theorem of Magidor and answers a question of Apter and Shelah.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)On strong compactness and supercompactness.Telis K. Menas - 1975 - Annals of Mathematical Logic 7 (4):327.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Strong axioms of infinity and elementary embeddings.Robert M. Solovay - 1978 - Annals of Mathematical Logic 13 (1):73.
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Strong compactness and other cardinal sins.Jussi Ketonen - 1972 - Annals of Mathematical Logic 5 (1):47.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On certain indestructibility of strong cardinals and a question of Hajnal.Moti Gitik & Saharon Shelah - 1989 - Archive for Mathematical Logic 28 (1):35-42.
    A model in which strongness ofκ is indestructible under κ+ -weakly closed forcing notions satisfying the Prikry condition is constructed. This is applied to solve a question of Hajnal on the number of elements of {λ δ |2 δ <λ}.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Supercompactness and level by level equivalence are compatible with indestructibility for strong compactness.Arthur W. Apter - 2007 - Archive for Mathematical Logic 46 (3-4):155-163.
    It is known that if $\kappa < \lambda$ are such that κ is indestructibly supercompact and λ is 2λ supercompact, then level by level equivalence between strong compactness and supercompactness fails. We prove a theorem which points towards this result being best possible. Specifically, we show that relative to the existence of a supercompact cardinal, there is a model for level by level equivalence between strong compactness and supercompactness containing a supercompact cardinal κ in which κ’s strong compactness is indestructible (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Supercompactness and measurable limits of strong cardinals II: Applications to level by level equivalence.Arthur W. Apter - 2006 - Mathematical Logic Quarterly 52 (5):457-463.
    We construct models for the level by level equivalence between strong compactness and supercompactness in which for κ the least supercompact cardinal and δ ≤ κ any cardinal which is either a strong cardinal or a measurable limit of strong cardinals, 2δ > δ+ and δ is < 2δ supercompact. In these models, the structure of the class of supercompact cardinals can be arbitrary, and the size of the power set of κ can essentially be made as large as desired. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Failures of SCH and Level by Level Equivalence.Arthur W. Apter - 2006 - Archive for Mathematical Logic 45 (7):831-838.
    We construct a model for the level by level equivalence between strong compactness and supercompactness in which below the least supercompact cardinal κ, there is a stationary set of cardinals on which SCH fails. In this model, the structure of the class of supercompact cardinals can be arbitrary.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The Least Measurable Can Be Strongly Compact and Indestructible.Arthur Apter & Moti Gitik - 1998 - Journal of Symbolic Logic 63 (4):1404-1412.
    We show the consistency, relative to a supercompact cardinal, of the least measurable cardinal being both strongly compact and fully Laver indestructible. We also show the consistency, relative to a supercompact cardinal, of the least strongly compact cardinal being somewhat supercompact yet not completely supercompact and having both its strong compactness and degree of supercompactness fully Laver indestructible.
    Download  
     
    Export citation  
     
    Bookmark   7 citations