Switch to: Citations

Add references

You must login to add references.
  1. Mathematics and Reality.Mary Leng - 2010 - Oxford: Oxford University Press.
    This book offers a defence of mathematical fictionalism, according to which we have no reason to believe that there are any mathematical objects. Perhaps the most pressing challenge to mathematical fictionalism is the indispensability argument for the truth of our mathematical theories (and therefore for the existence of the mathematical objects posited by those theories). According to this argument, if we have reason to believe anything, we have reason to believe that the claims of our best empirical theories are (at (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Mathematical Explanations Of Empirical Facts, And Mathematical Realism.Aidan Lyon - 2012 - Australasian Journal of Philosophy 90 (3):559-578.
    A main thread of the debate over mathematical realism has come down to whether mathematics does explanatory work of its own in some of our best scientific explanations of empirical facts. Realists argue that it does; anti-realists argue that it doesn't. Part of this debate depends on how mathematics might be able to do explanatory work in an explanation. Everyone agrees that it's not enough that there merely be some mathematics in the explanation. Anti-realists claim there is nothing mathematics can (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • The Enhanced Indispensability Argument: Representational versus Explanatory Role of Mathematics in Science.Juha Saatsi - 2011 - British Journal for the Philosophy of Science 62 (1):143-154.
    The Enhanced Indispensability Argument (Baker [ 2009 ]) exemplifies the new wave of the indispensability argument for mathematical Platonism. The new wave capitalizes on mathematics' role in scientific explanations. I will criticize some analyses of mathematics' explanatory function. In turn, I will emphasize the representational role of mathematics, and argue that the debate would significantly benefit from acknowledging this alternative viewpoint to mathematics' contribution to scientific explanations and knowledge.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Magicicada, Mathematical Explanation and Mathematical Realism.Davide Rizza - 2011 - Erkenntnis 74 (1):101-114.
    Baker claims to provide an example of mathematical explanation of an empirical phenomenon which leads to ontological commitment to mathematical objects. This is meant to show that the positing of mathematical entities is necessary for satisfactory scientific explanations and thus that the application of mathematics to science can be used, at least in some cases, to support mathematical realism. In this paper I show that the example of explanation Baker considers can actually be given without postulating mathematical objects and thus (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Sylvan's Box: A Short Story and Ten Morals.Graham Priest - 1997 - Notre Dame Journal of Formal Logic 38 (4):573-582.
    The paper contains a short story which is inconsistent, essentially so, but perfectly intelligible. The existence of such a story is used to establish various views about truth in fiction and impossible worlds.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • Impossible Worlds: A Modest Approach.Daniel Nolan - 1997 - Notre Dame Journal of Formal Logic 38 (4):535-572.
    Reasoning about situations we take to be impossible is useful for a variety of theoretical purposes. Furthermore, using a device of impossible worlds when reasoning about the impossible is useful in the same sorts of ways that the device of possible worlds is useful when reasoning about the possible. This paper discusses some of the uses of impossible worlds and argues that commitment to them can and should be had without great metaphysical or logical cost. The paper then provides an (...)
    Download  
     
    Export citation  
     
    Bookmark   303 citations  
  • Science Without Numbers: A Defence of Nominalism.Hartry H. Field - 1980 - Princeton, NJ, USA: Princeton University Press.
    Science Without Numbers caused a stir in 1980, with its bold nominalist approach to the philosophy of mathematics and science. It has been unavailable for twenty years and is now reissued in a revised edition with a substantial new preface presenting the author's current views and responses to the issues raised in subsequent debate.
    Download  
     
    Export citation  
     
    Bookmark   559 citations  
  • Mathematical Explanation in Science.Alan Baker - 2009 - British Journal for the Philosophy of Science 60 (3):611-633.
    Does mathematics ever play an explanatory role in science? If so then this opens the way for scientific realists to argue for the existence of mathematical entities using inference to the best explanation. Elsewhere I have argued, using a case study involving the prime-numbered life cycles of periodical cicadas, that there are examples of indispensable mathematical explanations of purely physical phenomena. In this paper I respond to objections to this claim that have been made by various philosophers, and I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Mathematics Without Numbers: Towards a Modal-Structural Interpretation.Geoffrey Hellman - 1989 - Oxford, England: Oxford University Press.
    Develops a structuralist understanding of mathematics, as an alternative to set- or type-theoretic foundations, that respects classical mathematical truth while ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  • Parts of Classes.David K. Lewis - 1990 - Blackwell.
    Download  
     
    Export citation  
     
    Bookmark   615 citations  
  • Remarks on counterpossibles.Berit Brogaard & Joe Salerno - 2013 - Synthese 190 (4):639-660.
    Since the publication of David Lewis’ Counterfactuals, the standard line on subjunctive conditionals with impossible antecedents (or counterpossibles) has been that they are vacuously true. That is, a conditional of the form ‘If p were the case, q would be the case’ is trivially true whenever the antecedent, p, is impossible. The primary justification is that Lewis’ semantics best approximates the English subjunctive conditional, and that a vacuous treatment of counterpossibles is a consequence of that very elegant theory. Another justification (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Depth: An Account of Scientific Explanation.Michael Strevens - 2008 - Cambridge: Harvard University Press.
    Approaches to explanation -- Causal and explanatory relevance -- The kairetic account of /D making -- The kairetic account of explanation -- Extending the kairetic account -- Event explanation and causal claims -- Regularity explanation -- Abstraction in regularity explanation -- Approaches to probabilistic explanation -- Kairetic explanation of frequencies -- Kairetic explanation of single outcomes -- Looking outward -- Looking inward.
    Download  
     
    Export citation  
     
    Bookmark   477 citations  
  • The Indispensability of Mathematics.Mark Colyvan - 2001 - Oxford, England: Oxford University Press.
    This book not only outlines the indispensability argument in considerable detail but also defends it against various challenges.
    Download  
     
    Export citation  
     
    Bookmark   277 citations  
  • (2 other versions)Response to Colyvan.Joseph Melia - 2002 - Mind 111 (441):75-80.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Cartwright on explanation and idealization.Mehmet Elgin & Elliott Sober - 2002 - Erkenntnis 57 (3):441 - 450.
    Nancy Cartwright (1983, 1999) argues that (1) the fundamental laws of physics are true when and only when appropriate ceteris paribus modifiers are attached and that (2) ceteris paribus modifiers describe conditions that are almost never satisfied. She concludes that when the fundamental laws of physics are true, they don't apply in the real world, but only in highly idealized counterfactual situations. In this paper, we argue that (1) and (2) together with an assumption about contraposition entail the opposite conclusion (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Are there genuine mathematical explanations of physical phenomena?Alan Baker - 2005 - Mind 114 (454):223-238.
    Many explanations in science make use of mathematics. But are there cases where the mathematical component of a scientific explanation is explanatory in its own right? This issue of mathematical explanations in science has been for the most part neglected. I argue that there are genuine mathematical explanations in science, and present in some detail an example of such an explanation, taken from evolutionary biology, involving periodical cicadas. I also indicate how the answer to my title question impacts on broader (...)
    Download  
     
    Export citation  
     
    Bookmark   257 citations  
  • Weaseling away the indispensability argument.Joseph Melia - 2000 - Mind 109 (435):455-480.
    According to the indispensability argument, the fact that we quantify over numbers, sets and functions in our best scientific theories gives us reason for believing that such objects exist. I examine a strategy to dispense with such quantification by simply replacing any given platonistic theory by the set of sentences in the nominalist vocabulary it logically entails. I argue that, as a strategy, this response fails: for there is no guarantee that the nominalist world that go beyond the set of (...)
    Download  
     
    Export citation  
     
    Bookmark   176 citations  
  • Inference to the best explanation and mathematical realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Optimisation and mathematical explanation: doing the Lévy Walk.Sam Baron - 2014 - Synthese 191 (3).
    The indispensability argument seeks to establish the existence of mathematical objects. The success of the indispensability argument turns on finding cases of genuine extra- mathematical explanation. In this paper, I identify a new case of extra- mathematical explanation, involving the search patterns of fully-aquatic marine predators. I go on to use this case to predict the prevalence of extra- mathematical explanation in science.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Indispensability and Explanation.Sorin Bangu - 2013 - British Journal for the Philosophy of Science 64 (2):255-277.
    The question as to whether there are mathematical explanations of physical phenomena has recently received a great deal of attention in the literature. The answer is potentially relevant for the ontology of mathematics; if affirmative, it would support a new version of the indispensability argument for mathematical realism. In this article, I first review critically a few examples of such explanations and advance a general analysis of the desiderata to be satisfied by them. Second, in an attempt to strengthen the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Structures and circumstances: two ways to fine-grain propositions.David Ripley - 2012 - Synthese 189 (1):97 - 118.
    This paper discusses two distinct strategies that have been adopted to provide fine-grained propositions; that is, propositions individuated more finely than sets of possible worlds. One strategy takes propositions to have internal structure, while the other looks beyond possible worlds, and takes propositions to be sets of circumstances, where possible worlds do not exhaust the circumstances. The usual arguments for these positions turn on fineness-of-grain issues: just how finely should propositions be individuated? Here, I compare the two strategies with an (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Who's Afraid of Impossible Worlds?Edwin D. Mares - 1997 - Notre Dame Journal of Formal Logic 38 (4):516-526.
    A theory of ersatz impossible worlds is developed to deal with the problem of counterpossible conditionals. Using only tools standardly in the toolbox of possible worlds theorists, it is shown that we can construct a model for counterpossibles. This model is a natural extension of Lewis's semantics for counterfactuals, but instead of using classical logic as its base, it uses the logic LP.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • How scientific models can explain.Alisa Bokulich - 2011 - Synthese 180 (1):33 - 45.
    Scientific models invariably involve some degree of idealization, abstraction, or nationalization of their target system. Nonetheless, I argue that there are circumstances under which such false models can offer genuine scientific explanations. After reviewing three different proposals in the literature for how models can explain, I shall introduce a more general account of what I call model explanations, which specify the conditions under which models can be counted as explanatory. I shall illustrate this new framework by applying it to the (...)
    Download  
     
    Export citation  
     
    Bookmark   171 citations  
  • The explanatory power of phase spaces.Aidan Lyon & Mark Colyvan - 2008 - Philosophia Mathematica 16 (2):227-243.
    David Malament argued that Hartry Field's nominalisation program is unlikely to be able to deal with non-space-time theories such as phase-space theories. We give a specific example of such a phase-space theory and argue that this presentation of the theory delivers explanations that are not available in the classical presentation of the theory. This suggests that even if phase-space theories can be nominalised, the resulting theory will not have the explanatory power of the original. Phase-space theories thus raise problems for (...)
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • On the explanatory role of mathematics in empirical science.Robert W. Batterman - 2010 - British Journal for the Philosophy of Science 61 (1):1-25.
    This paper examines contemporary attempts to explicate the explanatory role of mathematics in the physical sciences. Most such approaches involve developing so-called mapping accounts of the relationships between the physical world and mathematical structures. The paper argues that the use of idealizations in physical theorizing poses serious difficulties for such mapping accounts. A new approach to the applicability of mathematics is proposed.
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • Mathematics and reality.Mary Leng - 2010 - Bulletin of Symbolic Logic 17 (2):267-268.
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • Possibilities and paradox: an introduction to modal and many-valued logic.J. C. Beall - 2003 - New York: Oxford University Press. Edited by Bas C. Van Fraassen.
    Extensively classroom-tested, Possibilities and Paradox provides an accessible and carefully structured introduction to modal and many-valued logic. The authors cover the basic formal frameworks, enlivening the discussion of these different systems of logic by considering their philosophical motivations and implications. Easily accessible to students with no background in the subject, the text features innovative learning aids in each chapter, including exercises that provide hands-on experience, examples that demonstrate the application of concepts, and guides to further reading.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Ways Things Can't Be.Greg Restall - 1997 - Notre Dame Journal of Formal Logic 38 (4):583-596.
    Paraconsistent logics are often semantically motivated by considering "impossible worlds." Lewis, in "Logic for equivocators," has shown how we can understand paraconsistent logics by attributing equivocation of meanings to inconsistent believers. In this paper I show that we can understand paraconsistent logics without attributing such equivocation. Impossible worlds are simply sets of possible worlds, and inconsistent believers (inconsistently) believe that things are like each of the worlds in the set. I show that this account gives a sound and complete semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Explanation, Extrapolation, and Existence.Stephen Yablo - 2012 - Mind 121 (484):1007-1029.
    Mark Colyvan (2010) raises two problems for ‘easy road’ nominalism about mathematical objects. The first is that a theory’s mathematical commitments may run too deep to permit the extraction of nominalistic content. Taking the math out is, or could be, like taking the hobbits out of Lord of the Rings. I agree with the ‘could be’, but not (or not yet) the ‘is’. A notion of logical subtraction is developed that supports the possibility, questioned by Colyvan, of bracketing a theory’s (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Optimization Theory in Evolution.John Maynard Smith - 1994 - In Elliott Sober (ed.), Conceptual Issues in Evolutionary Biology. The Mit Press. Bradford Books. pp. 91.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Mathematics and Program Explanations.Juha Saatsi - 2012 - Australasian Journal of Philosophy 90 (3):579-584.
    Aidan Lyon has recently argued that some mathematical explanations of empirical facts can be understood as program explanations. I present three objections to his argument.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Critical phenomena and breaking drops: Infinite idealizations in physics.Robert Batterman - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):225-244.
    Thermodynamics and Statistical Mechanics are related to one another through the so-called "thermodynamic limit'' in which, roughly speaking the number of particles becomes infinite. At critical points (places of physical discontinuity) this limit fails to be regular. As a result, the "reduction'' of Thermodynamics to Statistical Mechanics fails to hold at such critical phases. This fact is key to understanding an argument due to Craig Callender to the effect that the thermodynamic limit leads to mistakes in Statistical Mechanics. I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Indexing and Mathematical Explanation.Alan Baker & Mark Colyvan - 2011 - Philosophia Mathematica 19 (3):323-334.
    We discuss a recent attempt by Chris Daly and Simon Langford to do away with mathematical explanations of physical phenomena. Daly and Langford suggest that mathematics merely indexes parts of the physical world, and on this understanding of the role of mathematics in science, there is no need to countenance mathematical explanation of physical facts. We argue that their strategy is at best a sketch and only looks plausible in simple cases. We also draw attention to how frequently Daly and (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • (1 other version)Mathematics without Numbers. Towards a Modal-Structural Interpretation.Geoffrey Hellman - 1991 - Tijdschrift Voor Filosofie 53 (4):726-727.
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Possibilities and Paradox; An Introduction to Modal and Many-Valued Logic.J. C. Beall & Bas C. van Fraassen - 2005 - Studia Logica 79 (2):310-313.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Road Work Ahead: Heavy Machinery on the Easy Road.M. Colyvan - 2012 - Mind 121 (484):1031-1046.
    In this paper I reply to Jody Azzouni, Otávio Bueno, Mary Leng, David Liggins, and Stephen Yablo, who offer defences of so-called ‘ easy road ’ nominalist strategies in the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Mathematics and aesthetic considerations in science.Mark Colyvan - 2002 - Mind 111 (441):69-74.
    Download  
     
    Export citation  
     
    Bookmark   81 citations