Switch to: References

Add citations

You must login to add citations.
  1. Are mathematical explanations causal explanations in disguise?A. Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2024 - Philosophy of Science (NA):1-19.
    There is a major debate as to whether there are non-causal mathematical explanations of physical facts that show how the facts under question arise from a degree of mathematical necessity considered stronger than that of contingent causal laws. We focus on Marc Lange’s account of distinctively mathematical explanations to argue that purported mathematical explanations are essentially causal explanations in disguise and are no different from ordinary applications of mathematics. This is because these explanations work not by appealing to what the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Conventionalist Account of Distinctively Mathematical Explanation.Mark Povich - 2023 - Philosophical Problems in Science 74:171–223.
    Distinctively mathematical explanations (DMEs) explain natural phenomena primarily by appeal to mathematical facts. One important question is whether there can be an ontic account of DME. An ontic account of DME would treat the explananda and explanantia of DMEs as ontic structures and the explanatory relation between them as an ontic relation (e.g., Pincock 2015, Povich 2021). Here I present a conventionalist account of DME, defend it against objections, and argue that it should be considered ontic. Notably, if indeed it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Not so distinctively mathematical explanations: topology and dynamical systems.Aditya Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2022 - Synthese 200 (3):1-40.
    So-called ‘distinctively mathematical explanations’ (DMEs) are said to explain physical phenomena, not in terms of contingent causal laws, but rather in terms of mathematical necessities that constrain the physical system in question. Lange argues that the existence of four or more equilibrium positions of any double pendulum has a DME. Here we refute both Lange’s claim itself and a strengthened and extended version of the claim that would pertain to any n-tuple pendulum system on the ground that such explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Mathematical Explanation: A Pythagorean Proposal.Sam Baron - 2024 - British Journal for the Philosophy of Science 75 (3):663-685.
    Mathematics appears to play an explanatory role in science. This, in turn, is thought to pave a way toward mathematical Platonism. A central challenge for mathematical Platonists, however, is to provide an account of how mathematical explanations work. I propose a property-based account: physical systems possess mathematical properties, which either guarantee the presence of other mathematical properties and, by extension, the physical states that possess them; or rule out other mathematical properties, and their associated physical states. I explain why Platonists (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Extra-Mathematical Program Explanation of Color Experience.Nicholas Danne - 2020 - International Studies in the Philosophy of Science 33 (3):153-173.
    In the debate over whether mathematical facts, properties, or entities explain physical events (in what philosophers call “extra-mathematical” explanations), Aidan Lyon’s (2012) affirmative answer stands out for its employment of the program explanation (PE) methodology of Frank Jackson and Philip Pettit (1990). Juha Saatsi (2012; 2016) objects, however, that Lyon’s examples from the indispensabilist literature are (i) unsuitable for PE, (ii) nominalizable into non-mathematical terms, and (iii) mysterious about the explanatory relation alleged to obtain between the PE’s mathematical explanantia and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Platonic Relations and Mathematical Explanations.Robert Knowles - 2021 - Philosophical Quarterly 71 (3):623-644.
    Some scientific explanations appear to turn on pure mathematical claims. The enhanced indispensability argument appeals to these ‘mathematical explanations’ in support of mathematical platonism. I argue that the success of this argument rests on the claim that mathematical explanations locate pure mathematical facts on which their physical explananda depend, and that any account of mathematical explanation that supports this claim fails to provide an adequate understanding of mathematical explanation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • There Are No Mathematical Explanations.Jaakko Kuorikoski - 2021 - Philosophy of Science 88 (2):189-212.
    If ontic dependence is the basis of explanation, there cannot be mathematical explanations. Accounting for the explanatory dependency between mathematical properties and empirical phenomena poses i...
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Unification and mathematical explanation in science.Sam Baron - 2021 - Synthese 199 (3-4):7339-7363.
    Mathematics clearly plays an important role in scientific explanation. Debate continues, however, over the kind of role that mathematics plays. I argue that if pure mathematical explananda and physical explananda are unified under a common explanation within science, then we have good reason to believe that mathematics is explanatory in its own right. The argument motivates the search for a new kind of scientific case study, a case in which pure mathematical facts and physical facts are explanatorily unified. I argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Du Châtelet on the Need for Mathematics in Physics.Aaron Wells - 2021 - Philosophy of Science 88 (5):1137-1148.
    There is a tension in Emilie Du Châtelet’s thought on mathematics. The objects of mathematics are ideal or fictional entities; nevertheless, mathematics is presented as indispensable for an account of the physical world. After outlining Du Châtelet’s position, and showing how she departs from Christian Wolff’s pessimism about Newtonian mathematical physics, I show that the tension in her position is only apparent. Du Châtelet has a worked-out defense of the explanatory and epistemic need for mathematical objects, consistent with their metaphysical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Honest Weasel A Guide for Successful Weaseling.Patrick Dieveney - 2020 - Disputatio 12 (56):41-69.
    Indispensability arguments are among the strongest arguments in support of mathematical realism. Given the controversial nature of their conclusions, it is not surprising that critics have supplied a number of rejoinders to these arguments. In this paper, I focus on one such rejoinder, Melia’s ‘Weasel Response’. The weasel is someone who accepts that scientific theories imply that there are mathematical objects, but then proceeds to ‘take back’ this commitment. While weaseling seems improper, accounts supplied in the literature have failed to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Imagination in Scientific Practice.Steven French - 2020 - European Journal for Philosophy of Science 10 (3):1-19.
    What is the role of the imagination in scientific practice? Here I focus on the nature and role of invitations to imagine in certain scientific texts as represented by the example of Einstein’s Special Relativity paper from 1905. Drawing on related discussions in aesthetics, I argue, on the one hand, that this role cannot be simply subsumed under ‘supposition’ but that, on the other, concerns about the impact of genre and symbolism can be dealt with, and hence present no obstacle (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • General Theory of Topological Explanations and Explanatory Asymmetry.Daniel Kostic - 2020 - Philosophical Transactions of the Royal Society B: Biological Sciences 375 (1796):1-8.
    In this paper, I present a general theory of topological explanations, and illustrate its fruitfulness by showing how it accounts for explanatory asymmetry. My argument is developed in three steps. In the first step, I show what it is for some topological property A to explain some physical or dynamical property B. Based on that, I derive three key criteria of successful topological explanations: a criterion concerning the facticity of topological explanations, i.e. what makes it true of a particular system; (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Counterfactual Scheming.Sam Baron - 2020 - Mind 129 (514):535-562.
    Mathematics appears to play a genuine explanatory role in science. But how do mathematical explanations work? Recently, a counterfactual approach to mathematical explanation has been suggested. I argue that such a view fails to differentiate the explanatory uses of mathematics within science from the non-explanatory uses. I go on to offer a solution to this problem by combining elements of the counterfactual theory of explanation with elements of a unification theory of explanation. The result is a theory according to which (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Mathematical models of games of chance: Epistemological taxonomy and potential in problem-gambling research.Catalin Barboianu - 2015 - UNLV Gaming Research and Review Journal 19 (1):17-30.
    Games of chance are developed in their physical consumer-ready form on the basis of mathematical models, which stand as the premises of their existence and represent their physical processes. There is a prevalence of statistical and probabilistic models in the interest of all parties involved in the study of gambling – researchers, game producers and operators, and players – while functional models are of interest more to math-inclined players than problem-gambling researchers. In this paper I present a structural analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Current Epistemic Status of the Indispensability Arguments in the Philosophy of Science.Catalin Barboianu - 2016 - Analele Universitatii Din Craiova 36 (2):108-132.
    The predisposition of the Indispensability Argument to objections, rephrasing and versions associated with the various views in philosophy of mathematics grants it a special status of a “blueprint” type rather than a debatable theme in the philosophy of science. From this point of view, it follows that the Argument has more an epistemic character than ontological.
    Download  
     
    Export citation  
     
    Bookmark  
  • Two Weak Points of the Enhanced Indispensability Argument – Domain of the Argument and Definition of Indispensability.Vladimir Drekalović - 2016 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 23 (3):280-298.
    The contemporary Platonists in the philosophy of mathematics argue that mathematical objects exist. One of the arguments by which they support this standpoint is the so-called Enhanced Indispensability Argument (EIA). This paper aims at pointing out the difficulties inherent to the EIA. The first is contained in the vague formulation of the Argument, which is the reason why not even an approximate scope of the set objects whose existence is stated by the Argument can be established. The second problem is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why inference to the best explanation doesn’t secure empirical grounds for mathematical platonism.Kenneth Boyce - 2018 - Synthese 198 (1):1-13.
    Proponents of the explanatory indispensability argument for mathematical platonism maintain that claims about mathematical entities play an essential explanatory role in some of our best scientific explanations. They infer that the existence of mathematical entities is supported by way of inference to the best explanation from empirical phenomena and therefore that there are the same sort of empirical grounds for believing in mathematical entities as there are for believing in concrete unobservables such as quarks. I object that this inference depends (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Importance and Explanatory Relevance: The Case of Mathematical Explanations.Gabriel Târziu - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):393-412.
    A way to argue that something plays an explanatory role in science is by linking explanatory relevance with importance in the context of an explanation. The idea is deceptively simple: a part of an explanation is an explanatorily relevant part of that explanation if removing it affects the explanation either by destroying it or by diminishing its explanatory power, i.e. an important part is an explanatorily relevant part. This can be very useful in many ontological debates. My aim in this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Mathematical explanation and indispensability.Vineberg Susan - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):233-247.
    This paper discusses Baker’s Enhanced Indispensability Argument for mathematical realism on the basis of the indispensable role mathematics plays in scientific explanations of physical facts, along with various responses to it. I argue that there is an analogue of causal explanation for mathematics which, of several basic types of explanation, holds the most promise for use in the EIA. I consider a plausible case where mathematics plays an explanatory role in this sense, but argue that such use still does not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can we have mathematical understanding of physical phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematics and Explanatory Generality.Alan Baker - 2017 - Philosophia Mathematica 25 (2):194-209.
    According to one popular nominalist picture, even when mathematics features indispensably in scientific explanations, this mathematics plays only a purely representational role: physical facts are represented, and these exclusively carry the explanatory load. I think that this view is mistaken, and that there are cases where mathematics itself plays an explanatory role. I distinguish two kinds of explanatory generality: scope generality and topic generality. Using the well-known periodical-cicada example, and also a new case study involving bicycle gears, I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • (1 other version)Models, Idealisations, and Realism.Juha Saatsi - 1st ed. 2016 - In Emiliano Ippoliti, Fabio Sterpetti & Thomas Nickles (eds.), Models and Inferences in Science. Cham: Springer.
    I explore a challenge that idealisations pose to scientific realism and argue that the realist can best accommodate idealisations by capitalising on certain modal features of idealised models that are underwritten by laws of nature.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Explanatory Abstractions.Lina Jansson & Juha Saatsi - 2019 - British Journal for the Philosophy of Science 70 (3):817–844.
    A number of philosophers have recently suggested that some abstract, plausibly non-causal and/or mathematical, explanations explain in a way that is radically dif- ferent from the way causal explanation explain. Namely, while causal explanations explain by providing information about causal dependence, allegedly some abstract explanations explain in a way tied to the independence of the explanandum from the microdetails, or causal laws, for example. We oppose this recent trend to regard abstractions as explanatory in some sui generis way, and argue (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • (1 other version)Complements, not competitors: causal and mathematical explanations.Holly Andersen - 2017 - British Journal for the Philosophy of Science 69 (2):485-508.
    A finer-grained delineation of a given explanandum reveals a nexus of closely related causal and non- causal explanations, complementing one another in ways that yield further explanatory traction on the phenomenon in question. By taking a narrower construal of what counts as a causal explanation, a new class of distinctively mathematical explanations pops into focus; Lange’s characterization of distinctively mathematical explanations can be extended to cover these. This new class of distinctively mathematical explanations is illustrated with the Lotka-Volterra equations. There (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Towards a Fictionalist Philosophy of Mathematics.Robert Knowles - 2015 - Dissertation, University of Manchester
    In this thesis, I aim to motivate a particular philosophy of mathematics characterised by the following three claims. First, mathematical sentences are generally speaking false because mathematical objects do not exist. Second, people typically use mathematical sentences to communicate content that does not imply the existence of mathematical objects. Finally, in using mathematical language in this way, speakers are not doing anything out of the ordinary: they are performing straightforward assertions. In Part I, I argue that the role played by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Parsimony and inference to the best mathematical explanation.Alan Baker - 2016 - Synthese 193 (2).
    Indispensability-based arguments for mathematical platonism are typically motivated by drawing an analogy between abstract mathematical objects and concrete scientific posits. In this paper, I argue that mathematics can sometimes help to reduce our concrete ontological, ideological, and structural commitments. My focus is on optimization explanations, and in particular the case study involving periodical cicadas. I argue that in this case, stronger mathematical apparatus yields explanations that have fewer concrete commitments. The nominalist cannot accept these more parsimonious explanations without embracing the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Indispensability and the problem of compatible explanations: A reply to ‘Should scientific realists be platonists?’.Josh Hunt - 2016 - Synthese 193 (2):451-467.
    Alan Baker’s enhanced indispensability argument supports mathematical platonism through the explanatory role of mathematics in science. Busch and Morrison defend nominalism by denying that scientific realists use inference to the best explanation to directly establish ontological claims. In response to Busch and Morrison, I argue that nominalists can rebut the EIA while still accepting Baker’s form of IBE. Nominalists can plausibly require that defenders of the EIA establish the indispensability of a particular mathematical entity. Next, I argue that IBE cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Abstract objects.Gideon Rosen - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Un extractor de jugo teórico. El papel de las matemáticas en la explicación científica.Manuel Barrantes - 2022 - Epistemologia E Historia de la Ciencia 7 (1):6-21.
    "A theoretical juice extractor: The role of mathematics in scientific explanation". There have recently been proposed cases where, supposedly, mathematics would play a genuinely explanatory role in science. These have been divided into those situations where the explanatory role would be played by mathematical operations, and those where it would be played by mathematical entities. In this article, I analyze some of these purported cases and argue that claims that mathematics can be genuinely explanatory are unfounded. Throughout my discussion, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Complements, Not Competitors: Causal and Mathematical Explanations.Holly Andersen - 2018 - British Journal for the Philosophy of Science 69 (2):485-508.
    A finer-grained delineation of a given explanandum reveals a nexus of closely related causal and non-causal explanations, complementing one another in ways that yield further explanatory traction on the phenomenon in question. By taking a narrower construal of what counts as a causal explanation, a new class of distinctively mathematical explanations pops into focus; Lange’s characterization of distinctively mathematical explanations can be extended to cover these. This new class of distinctively mathematical explanations is illustrated with the Lotka–Volterra equations. There are (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Indispensability and explanation: an overview and introduction.Daniele Molinini, Fabrice Pataut & Andrea Sereni - 2016 - Synthese 193 (2):317-332.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the ‘Indispensable Explanatory Role’ of Mathematics.Juha Saatsi - 2016 - Mind 125 (500):1045-1070.
    The literature on the indispensability argument for mathematical realism often refers to the ‘indispensable explanatory role’ of mathematics. I argue that we should examine the notion of explanatory indispensability from the point of view of specific conceptions of scientific explanation. The reason is that explanatory indispensability in and of itself turns out to be insufficient for justifying the ontological conclusions at stake. To show this I introduce a distinction between different kinds of explanatory roles—some ‘thick’ and ontologically committing, others ‘thin’ (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Sorin Bangu. The Applicability of Mathematics in Science: Indispensability and Ontology. Basingstoke: Palgrave Macmillan, 2012. ISBN 978-0-230-28520-0 (hbk). Pp. xiii + 252. [REVIEW]Christopher Pincock - 2014 - Philosophia Mathematica 22 (3):401-412.
    Download  
     
    Export citation  
     
    Bookmark  
  • The explanatory dispensability of idealizations.Sam Baron - 2016 - Synthese 193 (2):365-386.
    Enhanced indispensability arguments seek to establish realism about mathematics based on the explanatory role that mathematics plays in science. Idealizations pose a problem for such arguments. Idealizations, in a similar way to mathematics, boost the explanatory credentials of our best scientific theories. And yet, idealizations are not the sorts of things that are supposed to attract a realist attitude. I argue that the explanatory symmetry between idealizations and mathematics can potentially be broken as follows: although idealizations contribute to the explanatory (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Optimus prime: paraphrasing prime number talk.Jonathan Tallant - 2013 - Synthese 190 (12):2065-2083.
    Baker (Mind 114:223–238, 2005; Brit J Philos Sci 60:611–633, 2009) has recently defended what he calls the “enhanced” version of the indispensability argument for mathematical Platonism. In this paper I demonstrate that the nominalist can respond to Baker’s argument. First, I outline Baker’s argument in more detail before providing a nominalistically acceptable paraphrase of prime-number talk. Second, I argue that, for the nominalist, mathematical language is used to express physical facts about the world. In endorsing this line I follow moves (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mathematics and Program Explanations.Juha Saatsi - 2012 - Australasian Journal of Philosophy 90 (3):579-584.
    Aidan Lyon has recently argued that some mathematical explanations of empirical facts can be understood as program explanations. I present three objections to his argument.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The explanatory and heuristic power of mathematics.Marianna Antonutti Marfori, Sorin Bangu & Emiliano Ippoliti - 2023 - Synthese 201 (5):1-12.
    Download  
     
    Export citation  
     
    Bookmark  
  • What could mathematics be for it to function in distinctively mathematical scientific explanations?Marc Lange - 2021 - Studies in History and Philosophy of Science Part A 87 (C):44-53.
    Several philosophers have suggested that some scientific explanations work not by virtue of describing aspects of the world’s causal history and relations, but rather by citing mathematical facts. This paper investigates what mathematical facts could be in order for them to figure in such “distinctively mathematical” scientific explanations. For “distinctively mathematical explanations” to be explanations by constraint, mathematical language cannot operate in science as representationalism or platonism describes. It can operate as Aristotelian realism describes. That is because Aristotelian realism enables (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Representational indispensability and ontological commitment.John Heron - 2020 - Thought: A Journal of Philosophy 9 (2):105-114.
    Recent debates about mathematical ontology are guided by the view that Platonism's prospects depend on mathematics' explanatory role in science. If mathematics plays an explanatory role, and in the right kind of way, this carries ontological commitment to mathematical objects. Conversely, the assumption goes, if mathematics merely plays a representational role then our world-oriented uses of mathematics fail to commit us to mathematical objects. I argue that it is a mistake to think that mathematical representation is necessarily ontologically innocent and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Epistemic Indispensability Argument.Cristian Soto - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (1):145-161.
    This article elaborates the epistemic indispensability argument, which fully embraces the epistemic contribution of mathematics to science, but rejects the contention that such a contribution is a reason for granting reality to mathematicalia. Section 1 introduces the distinction between ontological and epistemic readings of the indispensability argument. Section 2 outlines some of the main flaws of the first premise of the ontological reading. Section 3 advances the epistemic indispensability argument in view of both applied and pure mathematics. And Sect. 4 (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The silent hexagon: explaining comb structures.Tim Räz - 2017 - Synthese 194 (5).
    The paper presents, and discusses, four candidate explanations of the structure, and construction, of the bees’ honeycomb. So far, philosophers have used one of these four explanations, based on the mathematical Honeycomb Conjecture, while the other three candidate explanations have been ignored. I use the four cases to resolve a dispute between Pincock and Baker about the Honeycomb Conjecture explanation. Finally, I find that the two explanations focusing on the construction mechanism are more promising than those focusing exclusively on the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Indispensability arguments in the philosophy of mathematics.Mark Colyvan - 2008 - Stanford Encyclopedia of Philosophy.
    One of the most intriguing features of mathematics is its applicability to empirical science. Every branch of science draws upon large and often diverse portions of mathematics, from the use of Hilbert spaces in quantum mechanics to the use of differential geometry in general relativity. It's not just the physical sciences that avail themselves of the services of mathematics either. Biology, for instance, makes extensive use of difference equations and statistics. The roles mathematics plays in these theories is also varied. (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • The Metarepresentational Role of Mathematics in Scientific Explanations.Colin McCullough-Benner - 2022 - Philosophy of Science 89 (4):742-760.
    Several philosophers have argued that to capture the generality of certain scientific explanations, we must count mathematical facts among their explanantia. I argue that we can better understand these explanations by adopting a more nuanced stance toward mathematical representations, recognizing the role of mathematical representation schemata in representing highly abstract features of physical systems. It is by picking out these abstract but nonmathematical features that explanations appealing to mathematics achieve a high degree of generality. The result is a rich conception (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Models, structures, and the explanatory role of mathematics in empirical science.Mary Leng - 2021 - Synthese 199 (3-4):10415-10440.
    Are there genuine mathematical explanations of physical phenomena, and if so, how can mathematical theories, which are typically thought to concern abstract mathematical objects, explain contingent empirical matters? The answer, I argue, is in seeing an important range of mathematical explanations as structural explanations, where structural explanations explain a phenomenon by showing it to have been an inevitable consequence of the structural features instantiated in the physical system under consideration. Such explanations are best cast as deductive arguments which, by virtue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Toying with the Toolbox: How Metaphysics Can Still Make a Contribution.Steven French - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (2):211-230.
    Current analytic metaphysics has been claimed to be, at best, out of touch with modern physics, at worst, actually in conflict with the latter The continuum companion to the philosophy of science, Continuum, London, 2011; Ladyman and Ross Every thing must go: metaphysics naturalized, Oxford University Press, Oxford, 2007). While agreeing with some of these claims, it has been suggested that metaphysics may still be of service by providing a kind of ‘toolbox’ of devices that philosophers of science can access (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations