Switch to: Citations

Add references

You must login to add references.
  1. A Quantum-Bayesian Route to Quantum-State Space.Christopher A. Fuchs & Rüdiger Schack - 2011 - Foundations of Physics 41 (3):345-356.
    In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent’s personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of quantum Bayesianism. The starting point is the representation (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Lorentz-invariance in modal interpretations.with Michael Dickson - 2004 - In Jeremy Butterfield & Hans Halvorson (eds.), Quantum Entanglements: Selected Papers. New York: Clarendon Press.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Mathematical Theory of Communication.Claude Elwood Shannon - 1948 - Bell System Technical Journal 27 (April 1924):379–423.
    The mathematical theory of communication.
    Download  
     
    Export citation  
     
    Bookmark   1178 citations  
  • Information Theory and Statistical Mechanics. II.Edwin T. Jaynes - 1957 - Physical Review 108 (2):171.
    Information theory and statistical mechanics II.
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • A Synopsis of the Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We summarize a new realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory's basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Worlds in the Everett interpretation.David Wallace - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):637-661.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Solving the measurement problem: De broglie-Bohm loses out to Everett. [REVIEW]Harvey R. Brown & David Wallace - 2004 - Foundations of Physics 35 (4):517-540.
    The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Relational EPR.Matteo Smerlak & Carlo Rovelli - 2007 - Foundations of Physics 37 (3):427-445.
    We study the EPR-type correlations from the perspective of the relational interpretation of quantum mechanics. We argue that these correlations do not entail any form of “non-locality”, when viewed in the context of this interpretation. The abandonment of strict Einstein realism implied by the relational stance permits to reconcile quantum mechanics, completeness, (operationally defined) separability, and locality.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Dualities of fields and strings.Joseph Polchinski - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 59 (C):6-20.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Generalized Kochen-Specker theorem.Asher Peres - 1996 - Foundations of Physics 26 (6):807-812.
    A generalized Kochen-Specker theorem is proved. It is shown that there exist sets of n projection operators, representing n yes-no questions about a quantum system, such that none of the 2″ possible answers is compatible with sum rules imposed by quantum mechanics. Namely, if a subset of commuting projection operators sums up to a matrix having only even or only odd eigenvalues, the number of “yes” answers ought to he even or odd, respectively. This requirement may lead to contradictions. An (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal interpretations and relativity.Wayne C. Myrvold - 2002 - Foundations of Physics 32 (11):1773-1784.
    A proof is given, at a greater level of generality than previous 'no-go' theorems, of the impossibility of formulating a modal interpretation that exhibits 'serious' Lorentz invariance at the fundamental level. Particular attention is given to modal interpretations of the type proposed by Bub.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Chasing Chimeras.Wayne C. Myrvold - 2009 - British Journal for the Philosophy of Science 60 (3):635-646.
    Earman and Ruetsche ([2005]) have cast their gaze upon existing no-go theorems for relativistic modal interpretations, and have found them inconclusive. They suggest that it would be more fruitful to investigate modal interpretations proposed for "really relativistic theories," that is, algebraic relativistic quantum field theories. They investigate the proposal of Clifton ([2000]), and extend Clifton's result that, for a host of states, his proposal yields no definite observables other than multiples of the identity. This leads Earman and Ruetsche to a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum Logic, Conditional Probability, and Interference.Hilary Putnam Michael Friedman - 1978 - Dialectica 32 (3-4):305-315.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three measurement problems.Tim Maudlin - 1995 - Topoi 14 (1):7-15.
    The aim of this essay is to distinguish and analyze several difficulties confronting attempts to reconcile the fundamental quantum mechanical dynamics with Born''s rule. It is shown that many of the proposed accounts of measurement fail at least one of the problems. In particular, only collapse theories and hidden variables theories have a chance of succeeding, and, of the latter, the modal interpretations fail. Any real solution demands new physics.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem. [REVIEW]A. J. Leggett - 2003 - Foundations of Physics 33 (10):1469-1493.
    It is argued that among possible nonlocal hidden-variable theories a particular class (called here “crypto-nonlocal” or CN) is relatively plausible on physical grounds. CN theories have the property that (for example) the two photons emitted in an atomic cascade process are indistinguishable in their individual statistical properties from photons emitted singly, and that in the latter case the effects of nonlocality are unobservable. It is demonstrated that all CN theories are constrained by inequalities which are violated by the quantum-mechanical predictions; (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Two paradoxes in quantum mechanics.H. P. Krips - 1969 - Philosophy of Science 36 (2):145-152.
    The purpose of this paper is to resolve two paradoxes, which occur in quantum theory, by using the discussion of the theory of measurement presented in two earlier papers by the author [3], [4], [5]. The two paradoxes discussed will be the Schrödinger cat paradox and the Einstein, Podolski, Rosen paradox [2]. An introductory section will be included which summarizes the relevant results from the author's previous papers. Also a discussion will be made regarding the author's interpretation of the density (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A propensity interpretation for quantum probabilities.H. Krips - 1989 - Philosophical Quarterly 39 (156):308-333.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Relativistic Invariance and Modal Interpretations.John Earman & Laura Ruetsche - 2005 - Philosophy of Science 72 (4):557-583.
    A number of arguments have been given to show that the modal interpretation of ordinary nonrelativistic quantum mechanics cannot be consistently extended to the relativistic setting. We find these arguments inconclusive. However, there is a prima facie reason to think that a tension exists between the modal interpretation and relativistic invariance; namely, the best candidate for a modal interpretation adapted to relativistic quantum field theory, a prescription due to Rob Clifton, comes out trivial when applied to a number of systems (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The quantum probability calculus.J. M. Jauch - 1974 - Synthese 29 (1-4):131 - 154.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Einstein, Incompleteness, and the Epistemic View of Quantum States.Nicholas Harrigan & Robert W. Spekkens - 2010 - Foundations of Physics 40 (2):125-157.
    Does the quantum state represent reality or our knowledge of reality? In making this distinction precise, we are led to a novel classification of hidden variable models of quantum theory. We show that representatives of each class can be found among existing constructions for two-dimensional Hilbert spaces. Our approach also provides a fruitful new perspective on arguments for the nonlocality and incompleteness of quantum theory. Specifically, we show that for models wherein the quantum state has the status of something real, (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Quantum Logic, Conditional Probability, and Interference.Michael Friedman & Hilary Putnam - 1978 - Dialectica 32 (3‐4):305-315.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Quantum mechanics without the projection postulate.Jeffrey Bub - 1992 - Foundations of Physics 22 (5):737-754.
    I show that the quantum state ω can be interpreted as defining a probability measure on a subalgebra of the algebra of projection operators that is not fixed (as in classical statistical mechanics) but changes with ω and appropriate boundary conditions, hence with the dynamics of the theory. This subalgebra, while not embeddable into a Boolean algebra, will always admit two-valued homomorphisms, which correspond to the different possible ways in which a set of “determinate” quantities (selected by ω and the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Measurement understood through the quantum potential approach.D. Bohm & B. J. Hiley - 1984 - Foundations of Physics 14 (3):255-274.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Louis Osgood Kattsoff. Modality and probability. The philosophical review, vol. 46 (1937), pp. 78–85.Garrett Birkhoff & John von Neumann - 1937 - Journal of Symbolic Logic 2 (1):44-44.
    Download  
     
    Export citation  
     
    Bookmark   189 citations  
  • Modal Interpretations of Quantum Mechanics and Relativity: A Reconsideration. [REVIEW]Joseph Berkovitz & Meir Hemmo - 2004 - Foundations of Physics 35 (3):373-397.
    Two of the main interpretative problems in quantum mechanics are the so-called measurement problem and the question of the compatibility of quantum mechanics with relativity theory. Modal interpretations of quantum mechanics were designed to solve both of these problems. They are no-collapse (typically) indeterministic interpretations of quantum mechanics that supplement the orthodox state description of physical systems by a set of possessed properties that is supposed to be rich enough to account for the classical-like behavior of macroscopic systems, but sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Properties of QBist State Spaces.D. M. Appleby, Åsa Ericsson & Christopher A. Fuchs - 2011 - Foundations of Physics 41 (3):564-579.
    Every quantum state can be represented as a probability distribution over the outcomes of an informationally complete measurement. But not all probability distributions correspond to quantum states. Quantum state space may thus be thought of as a restricted subset of all potentially available probabilities. A recent publication (Fuchs and Schack, arXiv:0906.2187v1, 2009) advocates such a representation using symmetric informationally complete (SIC) measurements. Building upon this work we study how this subset—quantum-state space—might be characterized. Our leading characteristic is that the inner (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum Mechanics and Experience.David Z. Albert - 1992 - Harvard Up.
    Presents a guide to the basics of quantum mechanics and measurement.
    Download  
     
    Export citation  
     
    Bookmark   261 citations  
  • Interpreting the many-worlds interpretation.David Albert & Barry Loewer - 1988 - Synthese 77 (November):195-213.
    Download  
     
    Export citation  
     
    Bookmark   187 citations  
  • Bayesian conditioning, the reflection principle, and quantum decoherence.Christopher A. Fuchs & Rüdiger Schack - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 233--247.
    The probabilities a Bayesian agent assigns to a set of events typically change with time, for instance when the agent updates them in the light of new data. In this paper we address the question of how an agent's probabilities at different times are constrained by Dutch-book coherence. We review and attempt to clarify the argument that, although an agent is not forced by coherence to use the usual Bayesian conditioning rule to update his probabilities, coherence does require the agent's (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantum Theory of Probability and Decisions.David Deutsch - 1999 - Proceedings of the Royal Society of London:3129--37.
    Download  
     
    Export citation  
     
    Bookmark   141 citations  
  • Relational quantum mechanics.Carlo Rovelli - 1996 - International Journal of Theoretical Physics 35 (8):1637--1678.
    Download  
     
    Export citation  
     
    Bookmark   247 citations  
  • Quantum probability and decision theory, revisited [2002 online-only paper].David Wallace - 2002
    An extended analysis is given of the program, originally suggested by Deutsch, of solving the probability problem in the Everett interpretation by means of decision theory. Deutsch's own proof is discussed, and alternatives are presented which are based upon different decision theories and upon Gleason's Theorem. It is argued that decision theory gives Everettians most or all of what they need from `probability'. Contact is made with Lewis's Principal Principle linking subjective credence with objective chance: an Everettian Principal Principle is (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Inferential vs. Dynamical Conceptions of Physics.David Wallace - unknown
    I contrast two possible attitudes towards a given branch of physics: as inferential, and as dynamical. I contrast these attitudes in classical statistical mechanics, in quantum mechanics, and in quantum statistical mechanics; in this last case, I argue that the quantum-mechanical and statistical-mechanical aspects of the question become inseparable. Along the way various foundational issues in statistical and quantum physics are illuminated.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A formal proof of the born rule from decision-theoretic assumptions [aka: How to Prove the Born Rule].David Wallace - 2009 - In Simon Saunders, Jon Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
    I develop the decision-theoretic approach to quantum probability, originally proposed by David Deutsch, into a mathematically rigorous proof of the Born rule in (Everett-interpreted) quantum mechanics. I sketch the argument informally, then prove it formally, and lastly consider a number of proposed ``counter-examples'' to show exactly which premises of the argument they violate. (This is a preliminary version of a chapter to appear --- under the title ``How to prove the Born Rule'' --- in Saunders, Barrett, Kent and Wallace, "Many (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Between classical and quantum.Nicolaas P. Landsman - 2007 - Handbook of the Philosophy of Science 2:417--553.
    The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. For example, we sketch how certain intuitive ideas of the founders of quantum theory have fared in the light of current mathematical knowledge. One such idea that has certainly stood the test of time is (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • QBism, the Perimeter of Quantum Bayesianism.Christopher A. Fuchs - 2010
    This article summarizes the Quantum Bayesian point of view of quantum mechanics, with special emphasis on the view's outer edges---dubbed QBism. QBism has its roots in personalist Bayesian probability theory, is crucially dependent upon the tools of quantum information theory, and most recently, has set out to investigate whether the physical world might be of a type sketched by some false-started philosophies of 100 years ago (pragmatism, pluralism, nonreductionism, and meliorism). Beyond conceptual issues, work at Perimeter Institute is focused on (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.
    Download  
     
    Export citation  
     
    Bookmark   395 citations  
  • On the Einstein Podolsky Rosen paradox.J. S. Bell - 2004 [1964] - In Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press. pp. 14--21.
    Download  
     
    Export citation  
     
    Bookmark   589 citations  
  • Bell-type quantum field theories.Sheldon Goldstein - manuscript
    In [3] John S. Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a |Ψ|2-distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; such processes we call Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Continuity and discontinuity of definite properties in the modal interpretation.Matthew Donald - unknown
    Technical results about the time dependence of eigenvectors of reduced density operators are considered, and the relevance of these results is discussed for modal interpretations of quantum mechanics which take the corresponding eigenprojections to represent definite properties. Continuous eigenvectors can be found if degeneracies are avoided. We show that, in finite dimensions, the space of degenerate operators has co-dimension 3 in the space of all reduced operators, suggesting that continuous eigenvectors almost surely exist. In any dimension, even when degeneracies are (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   455 citations  
  • Is quantum mechanics an island in theoryspace?Scott Aaronson - unknown
    This paper investigates what happens if we change quantum mechanics in several ways. The main results are as follows. First, if we replace the 2-norm by some other p-norm, then there are no nontrivial norm-preserving linear maps. Second, if we relax the demand that norm be preserved, we end up with a theory that allows rapid solution of hard computational problems known as PP-complete problems (as well as superluminal signalling). And third, if we restrict amplitudes to be real, we run (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Stochastic Dynamics of Quantum-Mechanical Systems.E. C. G. Sudarshan, P. M. Mathews & Jayaseetha Rau - 1961 - Physical Review 121:920--924.
    Download  
     
    Export citation  
     
    Bookmark   5 citations