Switch to: Citations

References in:

Natural selection

Stanford Encyclopedia of Philosophy (2008)

Add references

You must login to add references.
  1. The logical structure of evolutionary explanation and prediction: Darwinism’s fundamental schema.Neil Tennant - 2014 - Biology and Philosophy 29 (5):611-655.
    We present a logically detailed case-study of Darwinian evolutionary explanation. Special features of Darwin’s explanatory schema made it an unusual theoretical breakthrough, from the point of view of the philosophy of science. The schema employs no theoretical terms, and puts forward no theoretical hypotheses. Instead, it uses three observational generalizations—Variability, Heritability and Differential Reproduction—along with an innocuous assumption of Causal Efficacy, to derive Adaptive Evolution as a necessary consequence. Adaptive Evolution in turn, with one assumption of scale (‘Deep Time’), implies (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Unto Others: The Evolution and Psychology of Unselfish Behavior.Elliott Sober & David Sloan Wilson - 1998 - Harvard University Press.
    The authors demonstrate that unselfish behavior is in fact an important feature of both biological and human nature. Their book provides a panoramic view of altruism throughout the animal kingdom--from self-sacrificing parasites to the human capacity for selflessness--even as it explains the evolutionary sense of such behavior.
    Download  
     
    Export citation  
     
    Bookmark   494 citations  
  • The Negative View of Natural Selection.Jonathan Birch - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (2):569-573.
    An influential argument due to Elliott Sober, subsequently strengthened by Denis Walsh and Joel Pust, moves from plausible premises to the bold conclusion that natural selection cannot explain the traits of individual organisms. If the argument were sound, the explanatory scope of selection would depend, surprisingly, on metaphysical considerations concerning origin essentialism. I show that the Sober-Walsh-Pust argument rests on a flawed counterfactual criterion for explanatory relevance. I further show that a more defensible criterion for explanatory relevance recently proposed by (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Evolution and the levels of selection.Samir Okasha - 2006 - New York: Oxford University Press.
    Does natural selection act primarily on individual organisms, on groups, on genes, or on whole species? The question of levels of selection - on which biologists and philosophers have long disagreed - is central to evolutionary theory and to the philosophy of biology. Samir Okasha's comprehensive analysis gives a clear account of the philosophical issues at stake in the current debate.
    Download  
     
    Export citation  
     
    Bookmark   278 citations  
  • The nature of selection: evolutionary theory in philosophical focus.Elliott Sober - 1984 - Chicago: University of Chicago Press.
    The Nature of Selection is a straightforward, self-contained introduction to philosophical and biological problems in evolutionary theory. It presents a powerful analysis of the evolutionary concepts of natural selection, fitness, and adaptation and clarifies controversial issues concerning altruism, group selection, and the idea that organisms are survival machines built for the good of the genes that inhabit them. "Sober's is the answering philosophical voice, the voice of a first-rate philosopher and a knowledgeable student of contemporary evolutionary theory. His book merits (...)
    Download  
     
    Export citation  
     
    Bookmark   752 citations  
  • Manipulation and the causes of evolution.Kenneth Reisman & Patrick Forber - 2005 - Philosophy of Science 72 (5):1113-1123.
    Evolutionary processes such as natural selection and random drift are commonly regarded as causes of population-level change. We respond to a recent challenge that drift and selection are best understood as statistical trends, not causes. Our reply appeals to manipulation as a strategy for uncovering causal relationships: if you can systematically manipulate variable A to bring about a change in variable B, then A is a cause of B. We argue that selection and drift can be systematically manipulated to produce (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Individualist and multi-level perspectives on selection in structured populations.Benjamin Kerr & Peter Godfrey-Smith - 2002 - Biology and Philosophy 17 (4):477-517.
    Recent years have seen a renewed debate over the importance of groupselection, especially as it relates to the evolution of altruism. Onefeature of this debate has been disagreement over which kinds ofprocesses should be described in terms of selection at multiple levels,within and between groups. Adapting some earlier discussions, we presenta mathematical framework that can be used to explore the exactrelationships between evolutionary models that do, and those that donot, explicitly recognize biological groups as fitness-bearing entities.We show a fundamental set (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Natural selection and distributive explanation: A reply to Neander.Elliott Sober - 1995 - British Journal for the Philosophy of Science 46 (3):384-397.
    The thesis that natural selection explains the frequencies of traits in populations, but not why individual organisms have the traits tehy do, is here defended and elaborated. A general concept of ‘distributive explanation’ is discussed.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Two ways of thinking about fitness and natural selection.Mohan Matthen & André Ariew - 2002 - Journal of Philosophy 99 (2):55-83.
    How do fitness and natural selection relate to other evolutionary factors like architectural constraint, mode of reproduction, and drift? In one way of thinking, drawn from Newtonian dynamics, fitness is one force driving evolutionary change and added to other factors. In another, drawn from statistical thermodynamics, it is a statistical trend that manifests itself in natural selection histories. It is argued that the first model is incoherent, the second appropriate; a hierarchical realization model is proposed as a basis for a (...)
    Download  
     
    Export citation  
     
    Bookmark   196 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1349 citations  
  • The Creativity of Natural Selection? Part II: The Synthesis and Since.John Beatty - 2019 - Journal of the History of Biology 52 (4):705-731.
    This is the second of a two-part essay on the history of debates concerning the creativity of natural selection, from Darwin through the evolutionary synthesis and up to the present. In the first part, I focussed on the mid-late nineteenth century to the early twentieth, with special emphasis on early Darwinism and its critics, the self-styled “mutationists.” The second part focuses on the evolutionary synthesis and some of its critics, especially the “neutralists” and “neo-mutationists.” Like Stephen Gould, I consider the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Kinds of process and the levels of selection.Benjamin C. Jantzen - 2019 - Synthese 196 (6):2407-2433.
    Most attempts to answer the question of whether populations of groups can undergo natural selection focus on properties of the groups themselves rather than the dynamics of the population of groups. Those approaches to group selection that do emphasize dynamics lack an account of the relevant notion of equivalent dynamics. I show that the theory of ‘dynamical kinds’ I proposed in Jantzen :3617–3646, 2014) can be used as a framework for assessing dynamical equivalence. That theory is based upon the notion (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Four Pillars of Statisticalism.Denis M. Walsh, André Ariew & Mohan Matthen - 2017 - Philosophy, Theory, and Practice in Biology 9 (1):1-18.
    Over the past fifteen years there has been a considerable amount of debate concerning what theoretical population dynamic models tell us about the nature of natural selection and drift. On the causal interpretation, these models describe the causes of population change. On the statistical interpretation, the models of population dynamics models specify statistical parameters that explain, predict, and quantify changes in population structure, without identifying the causes of those changes. Selection and drift are part of a statistical description of population (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Natural selection and the struggle for existence.James G. Lennox & Bradley E. Wilson - 1994 - Studies in History and Philosophy of Science Part A 25 (1):65-80.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Causal Foundations of Evolutionary Genetics.Jun Otsuka - 2016 - British Journal for the Philosophy of Science 67 (1):247-269.
    The causal nature of evolution is one of the central topics in the philosophy of biology. The issue concerns whether equations used in evolutionary genetics point to some causal processes or purely phenomenological patterns. To address this question the present article builds well-defined causal models that underlie standard equations in evolutionary genetics. These models are based on minimal and biologically plausible hypotheses about selection and reproduction, and generate statistics to predict evolutionary changes. The causal reconstruction of the evolutionary principles shows (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Probabilistic causation and the explanatory role of natural selection.Pablo Razeto-Barry & Ramiro Frick - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (3):344-355.
    The explanatory role of natural selection is one of the long-term debates in evolutionary biology. Nevertheless, the consensus has been slippery because conceptual confusions and the absence of a unified, formal causal model that integrates different explanatory scopes of natural selection. In this study we attempt to examine two questions: (i) What can the theory of natural selection explain? and (ii) Is there a causal or explanatory model that integrates all natural selection explananda? For the first question, we argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On closing the gap between philosophical concepts and their usage in scientific practice: a lesson from the debate about natural selection as a mechanism.Lucas J. Matthews - 2016 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 55:21-28.
    In addition to theorizing about the role and value of mechanisms in scientific explanation or the causal structure of the world, there is a fundamental task of getting straight what a ‘mechanism’ is in the first place. Broadly, this paper is about the challenge of application: the challenge of aligning one's philosophical account of a scientific concept with the manner in which that concept is actually used in scientific practice. This paper considers a case study of the challenge of application (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science.David L. Hull - 1988 - University of Chicago Press.
    "Legend is overdue for replacement, and an adequate replacement must attend to the process of science as carefully as Hull has done. I share his vision of a serious account of the social and intellectual dynamics of science that will avoid both the rosy blur of Legend and the facile charms of relativism.... Because of [Hull's] deep concern with the ways in which research is actually done, Science as a Process begins an important project in the study of science. It (...)
    Download  
     
    Export citation  
     
    Bookmark   323 citations  
  • How to Read ‘Heritability’ in the Recipe Approach to Natural Selection.Pierrick Bourrat - 2015 - British Journal for the Philosophy of Science 66 (4):883-903.
    There are two ways evolution by natural selection is conceptualized in the literature. One provides a ‘recipe’ for ENS incorporating three ingredients: variation, differences in fitness, and heritability. The other provides formal equations of evolutionary change and partitions out selection from other causes of evolutionary changes such as transmission biases or drift. When comparing the two approaches there seems to be a tension around the concept of heritability. A recent claim has been made that the recipe approach is flawed and (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The wrong equations: a reply to Gildenhuys.Bruce Glymour - 2013 - Biology and Philosophy 28 (4):675-681.
    Glymour (Philos Sci 73:369–389, 2006) claims that classical population genetic models can reliably predict short and medium run population dynamics only given information about future fitnesses those models cannot themselves predict, and that in consequence the causal, ecological models which can predict future fitnesses afford a more foundational description of natural selection than do population genetic models. This paper defends the first claim from objections offered by Gildenhuys (Biol Philos, 2011).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Problems for Natural Selection as a Mechanism.Joyce C. Havstad - 2011 - Philosophy of Science 78 (3):512-523.
    Skipper and Millstein analyze natural selection and mechanism, concluding that natural selection is not a mechanism in the sense of the new mechanistic philosophy. Barros disagrees and provides his own account of natural selection as a mechanism. This discussion identifies a missing piece of Barros's account, attempts to fill in that piece, and reconsiders the revised account. Two principal objections are developed: one, the account does not characterize natural selection; two, the account is not mechanistic. Extensive and persistent variability causes (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Righteous modeling: the competence of classical population genetics. [REVIEW]Peter Gildenhuys - 2011 - Biology and Philosophy 26 (6):813-835.
    In a recent article, “Wayward Modeling: Population Genetics and Natural Selection,” Bruce Glymour claims that population genetics is burdened by serious predictive and explanatory inadequacies and that the theory itself is to blame. Because Glymour overlooks a variety of formal modeling techniques in population genetics, his arguments do not quite undermine a major scientific theory. However, his arguments are extremely valuable as they provide definitive proof that those who would deploy classical population genetics over natural systems must do so with (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (5 other versions)On the Origin of Species: By Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life.Charles Darwin - 1859 - San Diego: Sterling. Edited by David Quammen.
    Familiarity with Charles Darwin's treatise on evolution is essential to every well-educated individual. One of the most important books ever published--and a continuing source of controversy, a century and a half later--this classic of science is reproduced in a facsimile of the critically acclaimed first edition.
    Download  
     
    Export citation  
     
    Bookmark   514 citations  
  • Are random drift and natural selection conceptually distinct?Roberta L. Millstein - 2002 - Biology and Philosophy 17 (1):33-53.
    The latter half of the twentieth century has been marked by debates in evolutionary biology over the relative significance of natural selection and random drift: the so-called “neutralist/selectionist” debates. Yet John Beatty has argued that it is difficult, if not impossible, to distinguish the concept of random drift from the concept of natural selection, a claim that has been accepted by many philosophers of biology. If this claim is correct, then the neutralist/selectionist debates seem at best futile, and at worst, (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • The trials of life: Natural selection and random drift.Denis M. Walsh, Andre Ariew & Tim Lewens - 2002 - Philosophy of Science 69 (3):452-473.
    We distinguish dynamical and statistical interpretations of evolutionary theory. We argue that only the statistical interpretation preserves the presumed relation between natural selection and drift. On these grounds we claim that the dynamical conception of evolutionary theory as a theory of forces is mistaken. Selection and drift are not forces. Nor do selection and drift explanations appeal to the (sub-population-level) causes of population level change. Instead they explain by appeal to the statistical structure of populations. We briefly discuss the implications (...)
    Download  
     
    Export citation  
     
    Bookmark   190 citations  
  • On the propensity definition of fitness.Alexander Rosenberg - 1982 - Philosophy of Science 49 (2):268-273.
    In the insightful and searching paper of Mills and Beatty the following definition of ‘fitness’, as the term figures in the theory of natural selection, is offered:The [individual] fitness of an organism x in environment E equals n =dfn is the expected number of descendants which x will leave in E.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Natural selection and the traits of individual organisms.Joel Pust - 2004 - Biology and Philosophy 19 (5):765-779.
    I have recently argued that origin essentialism regarding individual organisms entails that natural selection does not explain why individual organisms have the traits that they do. This paper defends this and related theses against Mohan Matthen's recent objections.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Explaining Complex Adaptations: A Reply to Sober’s ”Reply to Neander’.Karen Neander - 1995 - British Journal for the Philosophy of Science 46 (4):583-587.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • The propensity interpretation of fitness.Susan K. Mills & John H. Beatty - 1979 - Philosophy of Science 46 (2):263-286.
    The concept of "fitness" is a notion of central importance to evolutionary theory. Yet the interpretation of this concept and its role in explanations of evolutionary phenomena have remained obscure. We provide a propensity interpretation of fitness, which we argue captures the intended reference of this term as it is used by evolutionary theorists. Using the propensity interpretation of fitness, we provide a Hempelian reconstruction of explanations of evolutionary phenomena, and we show why charges of circularity which have been levelled (...)
    Download  
     
    Export citation  
     
    Bookmark   205 citations  
  • The difference between selection and drift: A reply to Millstein. [REVIEW]Robert N. Brandon - 2005 - Biology and Philosophy 20 (1):153-170.
    Millstein [Bio. Philos. 17 (2002) 33] correctly identies a serious problem with the view that natural selection and random drift are not conceptually distinct. She offers a solution to this problem purely in terms of differences between the processes of selection and drift. I show that this solution does not work, that it leaves the vast majority of real biological cases uncategorized. However, I do think there is a solution to the problem she raises, and I offer it here. My (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Evolution by means of natural selection without reproduction: revamping Lewontin’s account.François Papale - 2020 - Synthese 198 (11):10429-10455.
    This paper analyzes recent attempts to reject reproduction with lineage formation as a necessary condition for evolution by means of natural selection :560–570, 2008; Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci 42:106–114, 2011; Bourrat in Biol Philos 29:517–538, 2014; Br J Philos Sci 66:883–903, 2015; Charbonneau in Philos Sci 81:727–740, 2014; Doolittle and Inkpen in Proc Natl Acad Sci 115:4006–4014, 2018). Building on the strengths of these attempts and avoiding their pitfalls, it is argued that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Adaptation and Evolutionary Theory.Robert N. Brandon - 1978 - Studies in History and Philosophy of Science Part A 9 (3):181.
    Download  
     
    Export citation  
     
    Bookmark   198 citations  
  • The Creativity of Natural Selection? Part I: Darwin, Darwinism, and the Mutationists.John Beatty - 2016 - Journal of the History of Biology 49 (4):659-684.
    This is the first of a two-part essay on the history of debates concerning the creativity of natural selection, from Darwin through the evolutionary synthesis and up to the present. Here I focus on the mid-late nineteenth century to the early twentieth, with special emphasis on early Darwinism and its critics, the self-styled “mutationists.” The second part focuses on the evolutionary synthesis and some of its critics, especially the “neutralists” and “neo-mutationists.” Like Stephen Gould, I consider the creativity of natural (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Relation between Kin and Multilevel Selection: An Approach Using Causal Graphs.Samir Okasha - 2016 - British Journal for the Philosophy of Science 67 (2):435-470.
    Kin selection and multilevel selection are alternative approaches for studying the evolution of social behaviour, the relation between which has long been a source of controversy. Many recent theorists regard the two approaches as ultimately equivalent, on the grounds that gene frequency change can be correctly expressed using either. However, this shows only that the two are formally equivalent, not that they offer equally good causal representations of the evolutionary process. This article articulates the notion of an ‘adequate causal representation’ (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Conditions for Evolution by Natural Selection.Peter Godfrey-Smith - 2007 - Journal of Philosophy 104 (10):489-516.
    Both biologists and philosophers often make use of simple verbal formulations of necessary and sufficient conditions for evolution by natural selection (ENS). Such summaries go back to Darwin's Origin of Species (especially the "Recapitulation"), but recent ones are more compact.1 Perhaps the most commonly cited formulation is due to Lewontin.2 These summaries tend to have three or four conditions, where the core requirement is a combination of variation, heredity, and fitness differences. The summaries are employed in several ways. First, they (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Natural selection and mechanistic regularity.Lane DesAutels - 2016 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 57:13-23.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The principle of drift: Biology's first law.Robert N. Brandon - 2006 - Journal of Philosophy 103 (7):319-335.
    Drift is to evolution as inertia is to Newtonian mechanics. Both are the "natural" or default states of the systems to which they apply. Both are governed by zero-force laws. The zero-force law in biology is stated here for the first time.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Wayward Modeling: Population Genetics and Natural Selection.Bruce Glymour - 2006 - Philosophy of Science 73 (4):369-389.
    Since the introduction of mathematical population genetics, its machinery has shaped our fundamental understanding of natural selection. Selection is taken to occur when differential fitnesses produce differential rates of reproductive success, where fitnesses are understood as parameters in a population genetics model. To understand selection is to understand what these parameter values measure and how differences in them lead to frequency changes. I argue that this traditional view is mistaken. The descriptions of natural selection rendered by population genetics models are (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Populations as individuals.Roberta L. Millstein - 2009 - Biological Theory 4 (3):267-273.
    Biologists studying ecology and evolution use the term “population” in many different ways. Yet little philosophical analysis of the concept has been done, either by biologists or philosophers, in contrast to the voluminous literature on the concept of “species.” This is in spite of the fact that “population” is arguably a far more central concept in ecological and evolutionary studies than “species” is. The fact that such a central concept has been employed in so many different ways is potentially problematic (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Natural selection as a mechanism.D. Benjamin Barros - 2008 - Philosophy of Science 75 (3):306-322.
    Skipper and Millstein (2005) argued that existing conceptions of mechanisms failed to "get at" natural selection, but left open the possibility that a refined conception of mechanisms could resolve the problems that they identified. I respond to Skipper and Millstein, and argue that while many of their points have merit, their objections can be overcome and that natural selection can be characterized as a mechanism. In making this argument, I discuss the role of regularity in mechanisms, and develop an account (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Thinking about evolutionary mechanisms: Natural selection.Robert Skipper & Roberta Millstein - 2004 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):327-347.
    This paper explores whether natural selection, a putative evolutionary mechanism, and a main one at that, can be characterized on either of the two dominant conceptions of mechanism, due to Glennan and the team of Machamer, Darden, and Craver, that constitute the “new mechanistic philosophy.” The results of the analysis are that neither of the dominant conceptions of mechanism adequately captures natural selection. Nevertheless, the new mechanistic philosophy possesses the resources for an understanding of natural selection under the rubric.
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Fitness, probability and the principles of natural selection.Frederic Bouchard & Alexander Rosenberg - 2004 - British Journal for the Philosophy of Science 55 (4):693-712.
    We argue that a fashionable interpretation of the theory of natural selection as a claim exclusively about populations is mistaken. The interpretation rests on adopting an analysis of fitness as a probabilistic propensity which cannot be substantiated, draws parallels with thermodynamics which are without foundations, and fails to do justice to the fundamental distinction between drift and selection. This distinction requires a notion of fitness as a pairwise comparison between individuals taken two at a time, and so vitiates the interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • The pomp of superfluous causes: The interpretation of evolutionary theory.Denis M. Walsh - 2007 - Philosophy of Science 74 (3):281-303.
    There are two competing interpretations of the modern synthesis theory of evolution: the dynamical (also know as ‘traditional’) and the statistical. The dynamical interpretation maintains that explanations offered under the auspices of the modern synthesis theory articulate the causes of evolution. It interprets selection and drift as causes of population change. The statistical interpretation holds that modern synthesis explanations merely cite the statistical structure of populations. This paper offers a defense of statisticalism. It argues that a change in trait frequencies (...)
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • Bookkeeping or metaphysics? The units of selection debate.D. M. Walsh - 2004 - Synthese 138 (3):337 - 361.
    The Units of Selection debate is a dispute about the causes of population change. I argue that it is generated by a particular `dynamical'' interpretation of natural selection theory, according to which natural selection causes differential survival and reproduction of individuals and natural selection explanations cite these causes. I argue that the dynamical interpretation is mistaken and offer in outline an alternative, `statistical'' interpretation, according to which natural selection theory is a fancy kind of `bookkeeping''. It explains by citing the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Science and Selection: Essays on Biological Evolution and the Philosophy of Science.David L. Hull - 2000 - Cambridge University Press.
    One way to understand science is as a selection process. David Hull, one of the dominant figures in contemporary philosophy of science, sets out in this 2001 volume a general analysis of this selection process that applies equally to biological evolution, the reaction of the immune system to antigens, operant learning, and social and conceptual change in science. Hull aims to distinguish between those characteristics that are contingent features of selection and those that are essential. Science and Selection brings together (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Increasingly Radical Claims about Heredity and Fitness.Eugene Earnshaw-Whyte - 2012 - Philosophy of Science 79 (3):396-412.
    On the classical account of evolution by natural selection found in Lewontin and many subsequent authors, ENS is conceived as involving three key ingredients: phenotypic variation, fitness differences, and heredity. Through the analysis of three problem cases involving heredity, I argue that the classical conception is substantially flawed, showing that heredity is not required for selection. I consider further problems with the classical account of ENS arising from conflations between three distinct senses of the central concept of ‘fitness’ and offer (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The replicator in retrospect.Peter Godfrey-Smith - 2000 - Biology and Philosophy 15 (3):403-423.
    The history and theoretical role of the concept of a ``replicator''is discussed, starting with Dawkins' and Hull's classic treatmentsand working forward. I argue that the replicator concept is still auseful one for evolutionary theory, but it should be revised insome ways. The most important revision is the recognition that notall processes of evolution by natural selection require thatsomething play the role of a replicator.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • The scope of selection: Sober and Neander on what natural selection explains.D. M. Walsh - 1998 - Australasian Journal of Philosophy 76 (2):250 – 264.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • What does natural selection explain? Correction to Sober.Karen Neander - 1988 - Philosophy of Science 55 (3):422-426.
    In this paper I argue against Sober's claim that natural selection does not explain the traits of individuals. Sober argues that natural selection only explains the distribution of traits in a population. My point is that the explanation of an individual's traits involves us in a description of the individual's ancestry, and in an explanation of the distribution of traits in that ancestral population. Thus Sober is wrong, natural selection is part of the explanation of the traits of individuals.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • The structure of evolution by natural selection.Richmond Campbell & Jason Scott Robert - 2005 - Biology and Philosophy 20 (4):673-696.
    We attempt a conclusive resolution of the debate over whether the principle of natural selection (PNS), especially conceived as the `principle' of the `survival of the fittest', is a tautology. This debate has been largely ignored for the past 15 years but not, we think, because it has actually been settled. We begin by describing the tautology objection, and situating the problem in the philosophical and biology literature. We then demonstrate the inadequacy of six prima facie plausible reasons for believing (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations