Switch to: Citations

Add references

You must login to add references.
  1. Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 1997 - Oxford, England: Oxford University Press USA.
    Moving beyond both realist and anti-realist accounts of mathematics, Shapiro articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • Categories for the Working Mathematician.Saunders Maclane - 1971 - Springer.
    Category Theory has developed rapidly. This book aims to present those ideas and methods which can now be effectively used by Mathe­ maticians working in a variety of other fields of Mathematical research. This occurs at several levels. On the first level, categories provide a convenient conceptual language, based on the notions of category, functor, natural transformation, contravariance, and functor category. These notions are presented, with appropriate examples, in Chapters I and II. Next comes the fundamental idea of an adjoint (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Explanatory unification and the causal structure of the world.Philip Kitcher - 1962 - In Philip Kitcher & Wesley C. Salmon (eds.), Scientific Explanation. Univ of Minnesota Pr. pp. 410-505.
    Download  
     
    Export citation  
     
    Bookmark   518 citations  
  • Naturalism in mathematics.Penelope Maddy - 1997 - New York: Oxford University Press.
    Naturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favor of another approach--naturalism. Penelope Maddy defines this naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory. Her clear, original treatment of this fundamental issue is informed by current work in both philosophy and mathematics, and will be accessible and enlightening to readers from both disciplines.
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • Realism in mathematics.Penelope Maddy - 1990 - New York: Oxford University Prress.
    Mathematicians tend to think of themselves as scientists investigating the features of real mathematical things, and the wildly successful application of mathematics in the physical sciences reinforces this picture of mathematics as an objective study. For philosophers, however, this realism about mathematics raises serious questions: What are mathematical things? Where are they? How do we know about them? Offering a scrupulously fair treatment of both mathematical and philosophical concerns, Penelope Maddy here delineates and defends a novel version of mathematical realism. (...)
    Download  
     
    Export citation  
     
    Bookmark   265 citations  
  • Mathematical explanation.Mark Steiner - 1978 - Philosophical Studies 34 (2):135 - 151.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • Ontology and mathematical practice.Jessica Carter - 2004 - Philosophia Mathematica 12 (3):244-267.
    In this paper I propose a position in the ontology of mathematics which is inspired mainly by a case study in the mathematical discipline if-theory. The main theses of this position are that mathematical objects are introduced by mathematicians and that after mathematical objects have been introduced, they exist as objectively accessible abstract objects.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Philosophy of mathematics: Making a fresh start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2002 - Philosophy and Phenomenological Research 65 (2):467-475.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • The Philosophy of Mathematical Practice.Paolo Mancosu (ed.) - 2008 - Oxford, England: Oxford University Press.
    There is an urgent need in philosophy of mathematics for new approaches which pay closer attention to mathematical practice. This book will blaze the trail: it offers philosophical analyses of important characteristics of contemporary mathematics and of many aspects of mathematical activity which escape purely formal logical treatment.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • (1 other version)C. S. Peirce's "First Real Discovery" and Its Contemporary Relevance.Jaakko Hintikka - 1980 - The Monist 63 (3):304-315.
    Like Leibniz, C. S. Peirce drew much of the inspiration for his philosophical work from a close study of logical and mathematical reasoning. Now what insights did this study reveal to Peirce? His own answer is formulated as follows: “My first real discovery about mathematical procedure was that there are two kinds of necessary reasoning, which I call the Corollarial and the Theorematic.…” The import of this discovery was lost on philosophers for a long time. The purpose of the present (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Representation and productive ambiguity in mathematics and the sciences.Emily Grosholz - 2007 - New York: Oxford University Press.
    Viewed this way, the texts yield striking examples of language and notation that are irreducibly ambiguous and productive because they are ambiguous.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Proof style and understanding in mathematics I: Visualization, unification and axiom choice.Jamie Tappenden - unknown
    Mathematical investigation, when done well, can confer understanding. This bare observation shouldn’t be controversial; where obstacles appear is rather in the effort to engage this observation with epistemology. The complexity of the issue of course precludes addressing it tout court in one paper, and I’ll just be laying some early foundations here. To this end I’ll narrow the field in two ways. First, I’ll address a specific account of explanation and understanding that applies naturally to mathematical reasoning: the view proposed (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Structuralism and metaphysics.Charles Parsons - 2004 - Philosophical Quarterly 54 (214):56--77.
    I consider different versions of a structuralist view of mathematical objects, according to which characteristic mathematical objects have no more of a 'nature' than is given by the basic relations of a structure in which they reside. My own version of such a view is non-eliminative in the sense that it does not lead to a programme for eliminating reference to mathematical objects. I reply to criticisms of non-eliminative structuralism recently advanced by Keränen and Hellman. In replying to the former, (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • The nature of mathematical knowledge.Philip Kitcher - 1983 - Oxford: Oxford University Press.
    This book argues against the view that mathematical knowledge is a priori,contending that mathematics is an empirical science and develops historically,just as ...
    Download  
     
    Export citation  
     
    Bookmark   276 citations  
  • (1 other version)The Nature of Mathematical Knowledge.Penelope Maddy - 1985 - Philosophy of Science 52 (2):312-314.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (6 other versions)Peirce.Timothy H. Engstrom & Christopher Hookway - 1989 - Philosophical Quarterly 39 (155):248.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2000 - Philosophical Quarterly 50 (198):120-123.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • Mathematical explanation: Why it matters.Paolo Mancosu - 2008 - In The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 134--149.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Beyond unification.Johannes Hafner & Paolo Mancosu - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 151--178.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Motivations for Realism in the Light of Mathematical Practice.Jessica Carter - 2005 - Croatian Journal of Philosophy 5 (1):17-29.
    The aim of this paper is to identify some of the motivations that can be found for taking a realist position concerning mathematical entities and to examine these motivations in the light of a case study in contemporary mathematics. The motivations that are found are as follows: (some) mathematicians are realists, mathematical statements are true, and finally, mathematical statements have a special certainty. These claims are compared with a result in algebraic topology stating that a certain sequence, the so-called Mayer-Vietoris (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Representation and Productive Ambiguity in Mathematics and the Sciences.Emily R. Grosholz - 2006 - Studia Leibnitiana 38 (2):244-246.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • (6 other versions)Peirce.Christopher Hookway - 1986 - Philosophy 61 (237):418-419.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Matters of fact.Dutch Golden Age - 2010 - Modern Intellectual History 7 (3):629-642.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (6 other versions)Peirce.Christopher Hookway - 1985 - Mind 95 (377):138-140.
    Download  
     
    Export citation  
     
    Bookmark   56 citations