Switch to: Citations

Add references

You must login to add references.
  1. Die ersten vier Bücher der Elemente Euklids.E. Neuenschwander - 1973 - Archive for History of Exact Sciences 9 (4-5):325-380.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by constructions is necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • A formal system for euclid’s elements.Jeremy Avigad, Edward Dean & John Mumma - 2009 - Review of Symbolic Logic 2 (4):700--768.
    We present a formal system, E, which provides a faithful model of the proofs in Euclid's Elements, including the use of diagrammatic reasoning.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • De Zolt’s Postulate: An Abstract Approach.Eduardo N. Giovannini, Edward H. Haeusler, Abel Lassalle-Casanave & Paulo A. S. Veloso - 2022 - Review of Symbolic Logic 15 (1):197-224.
    A theory of magnitudes involves criteria for their equivalence, comparison and addition. In this article we examine these aspects from an abstract viewpoint, by focusing on the so-called De Zolt’s postulate in the theory of equivalence of plane polygons (“If a polygon is divided into polygonal parts in any given way, then the union of all but one of these parts is not equivalent to the given polygon”). We formulate an abstract version of this postulate and derive it from some (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • "The whole is greater than the part." Mereology in Euclid's Elements.Klaus Robering - 2016 - Logic and Logical Philosophy 25 (3):371-409.
    The present article provides a mereological analysis of Euclid’s planar geometry as presented in the first two books of his Elements. As a standard of comparison, a brief survey of the basic concepts of planar geometry formulated in a set-theoretic framework is given in Section 2. Section 3.2, then, develops the theories of incidence and order using a blend of mereology and convex geometry. Section 3.3 explains Euclid’s “megethology”, i.e., his theory of magnitudes. In Euclid’s system of geometry, megethology takes (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Certain Mathematical Terms in Aristotle's Logic: Part I.Benedict Einarson - 1936 - American Journal of Philology 57 (1):33.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The development of Euclidean axiomatics: The systems of principles and the foundations of mathematics in editions of the Elements in the Early Modern Age.Vincenzo De Risi - 2016 - Archive for History of Exact Sciences 70 (6):591-676.
    The paper lists several editions of Euclid’s Elements in the Early Modern Age, giving for each of them the axioms and postulates employed to ground elementary mathematics.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The development of Euclidean axiomatics.Vincenzo Risi - 2016 - Archive for History of Exact Sciences 70 (6):591-676.
    The paper lists several editions of Euclid’s Elements in the Early Modern Age, giving for each of them the axioms and postulates employed to ground elementary mathematics.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Homeomeric Lines in Greek Mathematics.Fabio Acerbi - 2010 - Science in Context 23 (1):1-37.
    ArgumentThis article presents ancient documents on the subject of homeomeric lines. On the basis of such documents, the article reconstructs a definition of the notion as well as a proof of the result, which is left unproved in extant sources, that there are only three homeomeric lines: the straight line, the circumference, and the cylindrical helix. A point of particular historiographic interest is that homeomeric lines were the only class of lines defined directly as the extension of a mathematical property, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Evolution of the Euclidean Elements.Wilbur Richard Knorr - 1975 - Dordrecht, Holland: D. Reidel Publishing Company.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)Des méthodes dans les sciences de raisonnement.J. M. C. Duhamel - 1899 - The Monist 9:458.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ibn al-Haytham’s Revision of the Euclidean Foundations of Mathematics.Ahmad Ighbariah & Roy Wagner - 2018 - Hopos: The Journal of the International Society for the History of Philosophy of Science 8 (1):62-86.
    This article studies Ibn al-Haytham’s treatment of the common notions from Euclid’s Elements (usually referred to today as the axioms). We argue that Ibn al-Haytham initiated a new approach with regard to these foundational statements, rejecting their qualification as innate, self-evident, or primary. We suggest that Ibn al-Haytham’s engagement with experimental science, especially optics, led him to revise the framing of Euclidean common notions in a way that would fit his experimental approach.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Paralipomena zu Euklid.J. Heiberg - 1903 - Hermes 38 (2):161-201.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Philosophy of mathematics and deductive structure in Euclid's Elements.Ian Mueller - 1981 - Mineola, N.Y.: Dover Publications.
    A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics and its similarities to modern views as well as its differences. It focuses on philosophical, foundational, and logical questions — rather than strictly historical and mathematical issues — and features several helpful appendixes.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Neologicist Foundations: Inconsistent Abstraction Principles and Part-Whole.Paolo Mancosu & Benjamin Siskind - 2018 - In Gabriele Mras, Paul Weingartner & Bernhard Ritter (eds.), Philosophy of Logic and Mathematics: Proceedings of the 41st International Ludwig Wittgenstein Symposium. Berlin, Boston: De Gruyter. pp. 215-248.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ibn al-haytham, Ibn sīnā, al-ṭūsī : Égalité ou congruence.Roshdi Rashed - 2019 - Arabic Sciences and Philosophy 29 (2):157-170.
    RésuméLes mathématiciens et les philosophes arabophones, comme leurs prédécesseurs grecs, ont soulevé plusieurs questions épistémologiques fondamentales. Parmi ces questions figure celle qui porte sur le concept d’égalité et sur celui de congruence des grandeurs géométriques. Mais qu'entendait-on par de tels concepts? quelle était leur relation à l'idée de mouvement? Comme les réponses à ces questions combinaient souvent des éléments métriques et d'autres, philosophiques, j'ai choisi d’étudier celles d'un mathématicien, d'un philosophe et d'un mathématicien-philosophe.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Gapless Lines and Gapless Proofs: Intersections and Continuity in Euclid’s Elements.Vincenzo De Risi - 2021 - Apeiron 54 (2):233-259.
    In this paper, I attempt a reconstruction of the theory of intersections in the geometry of Euclid. It has been well known, at least since the time of Pasch onward, that in the Elements there are no explicit principles governing the existence of the points of intersections between lines, so that in several propositions of Euclid the simple crossing of two lines (two circles, for instance) is regarded as the actual meeting of such lines, it being simply assumed that the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Es méthodes dans Les sciences de raisonnement. [REVIEW]J. M. C. Duhamel - 1899 - Ancient Philosophy (Misc) 9:458.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Paralipomena zu Euklid.J. Heiberg - 1903 - Hermes 38 (3):321-356.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathesis universalis: l'idée de mathématique universelle d'Aristote à Descartes.David Rabouin - 2009 - Paris: Presses universitaires de France.
    Fondée sous les auspices du père de notre modernité philosophique Descartes, puis consolidée par des penseurs aussi importants que Leibniz, Bolzano ou Husserl, la mathesis universalis paraît représenter à elle seule l'ambitieux programme du « rationalisme classique ». Des philosophes tels que Husserl, Russell, Heidegger ou Cassirer ont pu s'accorder en ce point. Le développement de la « science moderne » aurait porté ce grand « rêve dogmatique » pour mener vers son terme le destin de la métaphysique occidentale. Pourtant (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Remarques sur l'Histoire du Texte des Éléments d'Euclide.B. Vitrac, A. Djebbar & S. Rommevaux - 2001 - Archive for History of Exact Sciences 55 (3):221-295.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Neologicist Foundations: Inconsistent Abstraction Principles and Part-Whole.Paolo Mancosu & Benjamin Siskind - 2018 - In Gabriele Mras, Paul Weingartner & Bernhard Ritter (eds.), Philosophy of Logic and Mathematics: Proceedings of the 41st International Ludwig Wittgenstein Symposium. Berlin, Boston: De Gruyter. pp. 215-248.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Wrong Text of Euclid: On Heiberg's Text and its Alternatives.Wilbur R. Knorr - 1996 - Centaurus 38 (2-3):208-276.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On Certain Mathematical Terms in Aristotleʼs Logic: Part II.Benedict Einarson - 1936 - American Journal of Philology 57 (2):151.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Philosophy of Mathematics and Deductive Structure of Euclid 's "Elements".Ian Mueller - 1983 - British Journal for the Philosophy of Science 34 (1):57-70.
    Download  
     
    Export citation  
     
    Bookmark   66 citations