Switch to: Citations

Add references

You must login to add references.
  1. Reliabilist Epistemology.Alvin Goldman & Bob Beddor - 2021 - Stanford Encyclopedia of Philosophy.
    One of the main goals of epistemologists is to provide a substantive and explanatory account of the conditions under which a belief has some desirable epistemic status (typically, justification or knowledge). According to the reliabilist approach to epistemology, any adequate account will need to mention the reliability of the process responsible for the belief, or truth-conducive considerations more generally. Historically, one major motivation for reliabilism—and one source of its enduring interest—is its naturalistic potential. According to reliabilists, epistemic properties can be (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Boon and Bane: On the Role of Adjustable Parameters in Simulation Models.Johannes Lenhard & Hans Hasse - 2017 - In Martin Carrier & Johannes Lenhard (eds.), Mathematics as a Tool: Tracing New Roles of Mathematics in the Sciences. Springer Verlag.
    We claim that adjustable parameters play a crucial role in building and applying simulation models. We analyze that role and illustrate our findings using examples from equations of state in thermodynamics. In building simulation models, two types of experiments, namely, simulation and classical experiments, interact in a feedback loop, in which model parameters are adjusted. A critical discussion of how adjustable parameters function shows that they are boon and bane of simulation. They help to enlarge the scope of simulation far (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Computer Simulations in Science and Engineering. Concept, Practices, Perspectives.Juan Manuel Durán - 2018 - Springer.
    This book addresses key conceptual issues relating to the modern scientific and engineering use of computer simulations. It analyses a broad set of questions, from the nature of computer simulations to their epistemological power, including the many scientific, social and ethics implications of using computer simulations. The book is written in an easily accessible narrative, one that weaves together philosophical questions and scientific technicalities. It will thus appeal equally to all academic scientists, engineers, and researchers in industry interested in questions (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Varying the Explanatory Span: Scientific Explanation for Computer Simulations.Juan Manuel Durán - 2017 - International Studies in the Philosophy of Science 31 (1):27-45.
    This article aims to develop a new account of scientific explanation for computer simulations. To this end, two questions are answered: what is the explanatory relation for computer simulations? And what kind of epistemic gain should be expected? For several reasons tailored to the benefits and needs of computer simulations, these questions are better answered within the unificationist model of scientific explanation. Unlike previous efforts in the literature, I submit that the explanatory relation is between the simulation model and the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Hilbert’s Program.Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Philosophy of Science.Alexander Bird - 1998 - Mcgill-Queen's University Press.
    Many introductions to this field start with the problem of justifying scientific knowledge but Alexander Bird begins by examining the subject matter, or metaphysics, of science. Using topical scientific debates he vividly elucidates what it is for the world to be governed by laws of nature. This idea provides the basis for explanations and causes and leads to a discussion of natural kinds and theoretical entities. With this foundation in place he goes on to consider the epistemological issues of how (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Computer simulations and experiments: The case of the Higgs boson.Michela Massimi & Wahid Bhimji - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 51 (C):71-81.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Image and Logic: A Material Culture of Microphysics.Peter Galison (ed.) - 1997 - University of Chicago Press: Chicago.
    Engages with the impact of modern technology on experimental physicists. This study reveals how the increasing scale and complexity of apparatus has distanced physicists from the very science which drew them into experimenting, and has fragmented microphysics into different technical traditions.
    Download  
     
    Export citation  
     
    Bookmark   324 citations  
  • Extending Ourselves: Computational Science, Empiricism, and Scientific Method.Paul Humphreys - 2004 - New York, US: Oxford University Press.
    Computational methods such as computer simulations, Monte Carlo methods, and agent-based modeling have become the dominant techniques in many areas of science. Extending Ourselves contains the first systematic philosophical account of these new methods, and how they require a different approach to scientific method. Paul Humphreys draws a parallel between the ways in which such computational methods have enhanced our abilities to mathematically model the world, and the more familiar ways in which scientific instruments have expanded our access to the (...)
    Download  
     
    Export citation  
     
    Bookmark   280 citations  
  • Software Intensive Science.John Symons & Jack Horner - 2014 - Philosophy and Technology 27 (3):461-477.
    This paper argues that the difference between contemporary software intensive scientific practice and more traditional non-software intensive varieties results from the characteristically high conditionality of software. We explain why the path complexity of programs with high conditionality imposes limits on standard error correction techniques and why this matters. While it is possible, in general, to characterize the error distribution in inquiry that does not involve high conditionality, we cannot characterize the error distribution in inquiry that depends on software. Software intensive (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Simulation and Similarity: Using Models to Understand the World.Michael Weisberg - 2013 - New York, US: Oxford University Press.
    one takes to be the most salient, any pair could be judged more similar to each other than to the third. Goodman uses this second problem to showthat there can be no context-free similarity metric, either in the trivial case or in a scientifically ...
    Download  
     
    Export citation  
     
    Bookmark   371 citations  
  • What is Justified Belief?Alvin I. Goldman - 1979 - In George Pappas (ed.), Justification and Knowledge: New Studies in Epistemology. Boston: D. Reidel. pp. 1-25.
    The aim of this paper is to sketch a theory of justified belief. What I have in mind is an explanatory theory, one that explains in a general way why certain beliefs are counted as justified and others as unjustified. Unlike some traditional approaches, I do not try to prescribe standards for justification that differ from, or improve upon, our ordinary standards. I merely try to explicate the ordinary standards, which are, I believe, quite different from those of many classical, (...)
    Download  
     
    Export citation  
     
    Bookmark   912 citations  
  • Holism, entrenchment, and the future of climate model pluralism.Johannes Lenhard & Eric Winsberg - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (3):253-262.
    In this paper, we explore the extent to which issues of simulation model validation take on novel characteristics when the models in question become particularly complex. Our central claim is that complex simulation models in general, and global models of climate in particular, face a form of confirmation holism. This holism, moreover, makes analytic understanding of complex models of climate either extremely difficult or even impossible. We argue that this supports a position we call convergence skepticism: the belief that the (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • The philosophical novelty of computer simulation methods.Paul Humphreys - 2009 - Synthese 169 (3):615 - 626.
    Reasons are given to justify the claim that computer simulations and computational science constitute a distinctively new set of scientific methods and that these methods introduce new issues in the philosophy of science. These issues are both epistemological and methodological in kind.
    Download  
     
    Export citation  
     
    Bookmark   133 citations  
  • Abstraction in computer science.Timothy Colburn & Gary Shute - 2007 - Minds and Machines 17 (2):169-184.
    We characterize abstraction in computer science by first comparing the fundamental nature of computer science with that of its cousin mathematics. We consider their primary products, use of formalism, and abstraction objectives, and find that the two disciplines are sharply distinguished. Mathematics, being primarily concerned with developing inference structures, has information neglect as its abstraction objective. Computer science, being primarily concerned with developing interaction patterns, has information hiding as its abstraction objective. We show that abstraction through information hiding is a (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Rethinking Expertise.Harry Collins & Robert Evans - 2007 - University of Chicago Press.
    ISBN-13: 978-0-226-11360-9 (cloth : alk. paper) ISBN-10: 0-226-11360-4 ... HM651.C64 2007 158.1—dc22 2007022671 The paper used in this publication meets the minimum requirements of the American National Standard for Information ...
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Are computer simulations experiments? And if not, how are they related to each other?Claus Beisbart - 2018 - European Journal for Philosophy of Science 8 (2):171-204.
    Computer simulations and experiments share many important features. One way of explaining the similarities is to say that computer simulations just are experiments. This claim is quite popular in the literature. The aim of this paper is to argue against the claim and to develop an alternative explanation of why computer simulations resemble experiments. To this purpose, experiment is characterized in terms of an intervention on a system and of the observation of the reaction. Thus, if computer simulations are experiments, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Does matter really matter? Computer simulations, experiments, and materiality.Wendy S. Parker - 2009 - Synthese 169 (3):483-496.
    A number of recent discussions comparing computer simulation and traditional experimentation have focused on the significance of “materiality.” I challenge several claims emerging from this work and suggest that computer simulation studies are material experiments in a straightforward sense. After discussing some of the implications of this material status for the epistemology of computer simulation, I consider the extent to which materiality (in a particular sense) is important when it comes to making justified inferences about target systems on the basis (...)
    Download  
     
    Export citation  
     
    Bookmark   136 citations  
  • Models, measurement and computer simulation: the changing face of experimentation.Margaret Morrison - 2009 - Philosophical Studies 143 (1):33-57.
    The paper presents an argument for treating certain types of computer simulation as having the same epistemic status as experimental measurement. While this may seem a rather counterintuitive view it becomes less so when one looks carefully at the role that models play in experimental activity, particularly measurement. I begin by discussing how models function as “measuring instruments” and go on to examine the ways in which simulation can be said to constitute an experimental activity. By focussing on the connections (...)
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • The philosophy of simulation: hot new issues or same old stew?Roman Frigg & Julian Reiss - 2008 - Synthese 169 (3):593-613.
    Computer simulations are an exciting tool that plays important roles in many scientific disciplines. This has attracted the attention of a number of philosophers of science. The main tenor in this literature is that computer simulations not only constitute interesting and powerful new science , but that they also raise a host of new philosophical issues. The protagonists in this debate claim no less than that simulations call into question our philosophical understanding of scientific ontology, the epistemology and semantics of (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Epistemic opacity, confirmation holism and technical debt: computer simulation in the light of empirical software engineering.Julian Newman - 2016 - In History and Philosophy of Computing (IFIP AICT 487). Cham, Switzerland: Springer. pp. 256-272.
    Epistemic opacity vis a vis human agents has been presented as an essential, ineliminable characteristic of computer simulation models resulting from the characteristics of the human cognitive agent. This paper argues, on the contrary, that such epistemic opacity as does occur in computer simulations is not a consequence of human limitations but of a failure on the part of model developers to adopt good software engineering practice for managing human error and ensuring the software artefact is maintainable. One consequence of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Reconstructing Reality: Models, Mathematics, and Simulations.Margaret Morrison - 2014 - New York, US: Oup Usa.
    The book examines issues related to the way modeling and simulation enable us to reconstruct aspects of the world we are investigating. It also investigates the processes by which we extract concrete knowledge from those reconstructions and how that knowledge is legitimated.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • How can computer simulations produce new knowledge?Claus Beisbart - 2012 - European Journal for Philosophy of Science 2 (3):395-434.
    It is often claimed that scientists can obtain new knowledge about nature by running computer simulations. How is this possible? I answer this question by arguing that computer simulations are arguments. This view parallels Norton’s argument view about thought experiments. I show that computer simulations can be reconstructed as arguments that fully capture the epistemic power of the simulations. Assuming the extended mind hypothesis, I furthermore argue that running the computer simulation is to execute the reconstructing argument. I discuss some (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Science in the age of computer simulation.Eric Winsberg - 2010 - Chicago: University of Chicago Press.
    Introduction -- Sanctioning models : theories and their scope -- Methodology for a virtual world -- A tale of two methods -- When theories shake hands -- Models of climate : values and uncertainties -- Reliability without truth -- Conclusion.
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • On the Stability of the Laboratory Sciences.Ian Hacking - 1988 - Journal of Philosophy 85 (10):507-514.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Simulated experiments: Methodology for a virtual world.Winsberg Eric - 2003 - Philosophy of Science 70 (1):105-125.
    This paper examines the relationship between simulation and experiment. Many discussions of simulation, and indeed the term "numerical experiments," invoke a strong metaphor of experimentation. On the other hand, many simulations begin as attempts to apply scientific theories. This has lead many to characterize simulation as lying between theory and experiment. The aim of the paper is to try to reconcile these two points of viewto understand what methodological and epistemological features simulation has in common with experimentation, while at the (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • How Digital Computer Simulations Explain Real‐World Processes.Ulrich Krohs - 2008 - International Studies in the Philosophy of Science 22 (3):277 – 292.
    Scientists of many disciplines use theoretical models to explain and predict the dynamics of the world. They often have to rely on digital computer simulations to draw predictions fromthe model. But to deliver phenomenologically adequate results, simulations deviate from the assumptions of the theoretical model. Therefore the role of simulations in scientific explanation demands itself an explanation. This paper analyzes the relation between real-world system, theoretical model, and simulation. It is argued that simulations do not explain processes in the real (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Computational Science and its Effects.Paul Humphreys - 2011 - In M. Carrier & A. Nordmann (eds.), Science in the Context of Application. Springer. pp. 131--142.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Boon and Bane: On the Role of Adjustable Parameters in Simulation Models.Hans Hasse & Johannes Lenhard - 2017 - In Martin Carrier & Johannes Lenhard (eds.), Mathematics as a Tool: Tracing New Roles of Mathematics in the Sciences. Springer Verlag.
    We claim that adjustable parameters play a crucial role in building and applying simulation models. We analyze that role and illustrate our findings using examples from equations of state in thermodynamics. In building simulation models, two types of experiments, namely, simulation and classical experiments, interact in a feedback loop, in which model parameters are adjusted. A critical discussion of how adjustable parameters function shows that they are boon and bane of simulation. They help to enlarge the scope of simulation far (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The philosophy of simulation: hot new issues or same old stew?Roman Frigg & Julian Reiss - 2011 - Synthese 180 (1):77-77.
    Computer simulations are an exciting tool that plays important roles in many scientific disciplines. This has attracted the attention of a number of philosophers of science. The main tenor in this literature is that computer simulations not only constitute interesting and powerful new science, but that they also raise a host of new philosophical issues. The protagonists in this debate claim no less than that simulations call into question our philosophical understanding of scientific ontology, the epistemology and semantics of models (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The philosophy of simulation: hot new issues or same old stew?Roman Frigg & Julian Reiss - 2008 - Synthese 169 (3):593-613.
    Computer simulations are an exciting tool that plays important roles in many scientific disciplines. This has attracted the attention of a number of philosophers of science. The main tenor in this literature is that computer simulations not only constitute interesting and powerful new science, but that they also raise a host of new philosophical issues. The protagonists in this debate claim no less than that simulations call into question our philosophical understanding of scientific ontology, the epistemology and semantics of models (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Explaining simulated phenomena. A defense of the epistemic power of computer simulations.Juan M. Durán - 2013 - Dissertation, University of Stuttgart
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Philosophy of Science.Alexander Bird - 2000 - Mind 109 (434):325-327.
    Download  
     
    Export citation  
     
    Bookmark   66 citations