Switch to: Citations

Add references

You must login to add references.
  1. Tool and Object: A History and Philosophy of Category Theory.Ralf Krömer - 2009 - Bulletin of Symbolic Logic 15 (3):320-322.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Conceptions of the continuum.Solomon Feferman - unknown
    Key words: the continuum, structuralism, conceptual structuralism, basic structural conceptions, Euclidean geometry, Hilbertian geometry, the real number system, settheoretical conceptions, phenomenological conceptions, foundational conceptions, physical conceptions.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Degrees of Objectivity? Mathemata and Social Objects.José Ferreirós - 2022 - Topoi 42 (1):199-209.
    A down-to-earth admission of abstract objects can be based on detailed explanation of where the objectivity of mathematics comes from, and how a ‘thin’ notion of object emerges from objective mathematical discourse or practices. We offer a sketch of arguments concerning both points, as a basis for critical scrutiny of the idea that mathematical and social objects are essentially of the same kind—which is criticized. Some authors have proposed that mathematical entities are indeed institutional objects, a product of our collective (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)La Science et l'Hypothèse.Henri Poincaré - 1902 - Revue de Métaphysique et de Morale 11 (1):1-1.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2002 - Philosophy and Phenomenological Research 65 (2):467-475.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • (2 other versions)The Construction of Social Reality.John Searle - 1995 - Philosophy 71 (276):313-315.
    Download  
     
    Export citation  
     
    Bookmark   510 citations  
  • The Objectivity of Mathematics.Stewart Shapiro - 2007 - Synthese 156 (2):337-381.
    The purpose of this paper is to apply Crispin Wright’s criteria and various axes of objectivity to mathematics. I test the criteria and the objectivity of mathematics against each other. Along the way, various issues concerning general logic and epistemology are encountered.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Where our number concepts come from.Susan Carey - 2009 - Journal of Philosophy 106 (4):220-254.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • An answer to Hellman's question: ‘Does category theory provide a framework for mathematical structuralism?’.Steve Awodey - 2004 - Philosophia Mathematica 12 (1):54-64.
    An affirmative answer is given to the question quoted in the title.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • On the Infinite.David Hilbert - 1926 - Mathematische Annalen 95:161-190.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Intuitionism and Formalism.L. E. J. Brouwer - 1913 - Bulletin of the American Mathematical Society 20:81-96.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Substanzbegriff und Funktionsbegriff.Ernst Cassirer - 1910 - Revue de Métaphysique et de Morale 18 (6):7-8.
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • Mathematical Knowledge and the Interplay of Practices.José Ferreirós - 2015 - Princeton, USA: Princeton University Press.
    On knowledge and practices: a manifesto -- The web of practices -- Agents and frameworks -- Complementarity in mathematics -- Ancient Greek mathematics: a role for diagrams -- Advanced math: the hypothetical conception -- Arithmetic certainty -- Mathematics developed: the case of the reals -- Objectivity in mathematical knowledge -- The problem of conceptual understanding.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Dedekind and Wolffian Deductive Method.José Ferreirós & Abel Lassalle-Casanave - 2022 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (4):345-365.
    Dedekind’s methodology, in his classic booklet on the foundations of arithmetic, has been the topic of some debate. While some authors make it closely analogue to Hilbert’s early axiomatics, others emphasize its idiosyncratic features, most importantly the fact that no axioms are stated and its careful deductive structure apparently rests on definitions alone. In particular, the so-called Dedekind “axioms” of arithmetic are presented by him as “characteristic conditions” in the _definition_ of the complex concept of a _simply infinite_ system. Making (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dedekind’s Map-theoretic Period.José Ferreirós - 2017 - Philosophia Mathematica 25 (3):318–340.
    In 1887–1894, Richard Dedekind explored a number of ideas within the project of placing mappings at the very center of pure mathematics. We review two such initiatives: the introduction in 1894 of groups into Galois theory intrinsically via field automorphisms, and a new attempt to define the continuum via maps from ℕ to ℕ in 1891. These represented the culmination of Dedekind’s efforts to reconceive pure mathematics within a theory of sets and maps and throw new light onto the nature (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hilbert, logicism, and mathematical existence.José Ferreirós - 2009 - Synthese 170 (1):33 - 70.
    David Hilbert’s early foundational views, especially those corresponding to the 1890s, are analysed here. I consider strong evidence for the fact that Hilbert was a logicist at that time, following upon Dedekind’s footsteps in his understanding of pure mathematics. This insight makes it possible to throw new light on the evolution of Hilbert’s foundational ideas, including his early contributions to the foundations of geometry and the real number system. The context of Dedekind-style logicism makes it possible to offer a new (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Structure in mathematics.Saunders Lane - 1996 - Philosophia Mathematica 4 (2):174-183.
    The article considers structuralism as a philosophy of mathematics, as based on the commonly accepted explicit mathematical concept of a structure. Such a structure consists of a set with specified functions and relations satisfying specified axioms, which describe the type of the structure. Examples of such structures such as groups and spaces, are described. The viewpoint is now dominant in organizing much of mathematics, but does not cover all mathematics, in particular most applications. It does not explain why certain structures (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Structuralism and metaphysics.Charles Parsons - 2004 - Philosophical Quarterly 54 (214):56--77.
    I consider different versions of a structuralist view of mathematical objects, according to which characteristic mathematical objects have no more of a 'nature' than is given by the basic relations of a structure in which they reside. My own version of such a view is non-eliminative in the sense that it does not lead to a programme for eliminating reference to mathematical objects. I reply to criticisms of non-eliminative structuralism recently advanced by Keränen and Hellman. In replying to the former, (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Dedekind's structuralism: An interpretation and partial defense.Erich H. Reck - 2003 - Synthese 137 (3):369 - 419.
    Various contributors to recent philosophy of mathematics havetaken Richard Dedekind to be the founder of structuralismin mathematics. In this paper I examine whether Dedekind did, in fact, hold structuralist views and, insofar as that is the case, how they relate to the main contemporary variants. In addition, I argue that his writings contain philosophical insights that are worth reexamining and reviving. The discussion focusses on Dedekind''s classic essay Was sind und was sollen die Zahlen?, supplemented by evidence from Stetigkeit und (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • (1 other version)Mathematical structuralism.Stewart Shapiro - 1996 - Philosophia Mathematica 4 (2):81-82.
    STEWART SHAPIRO; Mathematical Structuralism, Philosophia Mathematica, Volume 4, Issue 2, 1 May 1996, Pages 81–82, https://doi.org/10.1093/philmat/4.2.81.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Provenance of Pure Reason: Essays in the Philosophy of Mathematics and Its History.William Tait - 2006 - Bulletin of Symbolic Logic 12 (4):608-611.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Structuralism.Geoffrey Hellman - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press.
    With developments in the 19th and early 20th centuries, structuralist ideas concerning the subject matter of mathematics have become commonplace. Yet fundamental questions concerning structures and relations themselves as well as the scope of structuralist analyses remain to be answered. The distinction between axioms as defining conditions and axioms as assertions is highlighted as is the problem of the indefinite extendability of any putatively all-embracing realm of structures. This chapter systematically compares four main versions: set-theoretic structuralism, a version taking structures (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Beyond natural geometry: on the nature of proto-geometry.José Ferreirós & Manuel J. García-Pérez - 2020 - Philosophical Psychology 33 (2):181-205.
    ABSTRACTWe discuss the thesis of universality of geometric notions and offer critical reflections on the concept of “natural geometry” employed by Spelke and others. Promoting interdisciplinary wor...
    Download  
     
    Export citation  
     
    Bookmark   9 citations