Switch to: Citations

Add references

You must login to add references.
  1. On Dedekind's Logicism.José Ferreirós - unknown
    The place of Richard Dedekind in the history of logicism is a controversial matter. The conception of logic incorporated in his work is certainly old-fashioned, in spite of innovative elements that would play an important role in late 19th and early 20th century discussions. Yet his understanding of logic and logicism remains of interest for the light it throws upon the development of modern logic in general, and logicist views of the foundations of mathematics in particular. The paper clarifies Dedekind's (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Labyrinth of Thought. A History of Set Theory and Its Role in Modern Mathematics.José Ferreirós - 2002 - Studia Logica 72 (3):437-440.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Dedekind's Logicism.Ansten Mørch Klev - 2015 - Philosophia Mathematica:nkv027.
    A detailed argument is provided for the thesis that Dedekind was a logicist about arithmetic. The rules of inference employed in Dedekind's construction of arithmetic are, by his lights, all purely logical in character, and the definitions are all explicit; even the definition of the natural numbers as the abstract type of simply infinite systems can be seen to be explicit. The primitive concepts of the construction are logical in their being intrinsically tied to the functioning of the understanding.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kant on real definitions in geometry.Jeremy Heis - 2014 - Canadian Journal of Philosophy 44 (5-6):605-630.
    This paper gives a contextualized reading of Kant's theory of real definitions in geometry. Though Leibniz, Wolff, Lambert and Kant all believe that definitions in geometry must be ‘real’, they disagree about what a real definition is. These disagreements are made vivid by looking at two of Euclid's definitions. I argue that Kant accepted Euclid's definition of circle and rejected his definition of parallel lines because his conception of mathematics placed uniquely stringent requirements on real definitions in geometry. Leibniz, Wolff (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Traditional logic and the early history of sets, 1854-1908.José Ferreirós - 1996 - Archive for History of Exact Sciences 50 (1):5-71.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The foundations of arithmetic.Gottlob Frege - 1884/1950 - Evanston, Ill.,: Northwestern University Press.
    In arithmetic, if only because many of its methods and concepts originated in India, it has been the tradition to reason less strictly than in geometry, ...
    Download  
     
    Export citation  
     
    Bookmark   419 citations  
  • The classical model of science: A millennia-old model of scientific rationality.Willem R. de Jong & Arianna Betti - 2010 - Synthese 174 (2):185-203.
    Throughout more than two millennia philosophers adhered massively to ideal standards of scientific rationality going back ultimately to Aristotle’s Analytica posteriora . These standards got progressively shaped by and adapted to new scientific needs and tendencies. Nevertheless, a core of conditions capturing the fundamentals of what a proper science should look like remained remarkably constant all along. Call this cluster of conditions the Classical Model of Science . In this paper we will do two things. First of all, we will (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Hilbert, logicism, and mathematical existence.José Ferreirós - 2009 - Synthese 170 (1):33 - 70.
    David Hilbert’s early foundational views, especially those corresponding to the 1890s, are analysed here. I consider strong evidence for the fact that Hilbert was a logicist at that time, following upon Dedekind’s footsteps in his understanding of pure mathematics. This insight makes it possible to throw new light on the evolution of Hilbert’s foundational ideas, including his early contributions to the foundations of geometry and the real number system. The context of Dedekind-style logicism makes it possible to offer a new (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Arithmetic and the categories.Charles Parsons - 1984 - Topoi 3 (2):109-121.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Kant and the exact sciences.Michael Friedman - 1992 - Cambridge: Harvard University Press.
    In this new book, Michael Friedman argues that Kant's continuing efforts to find a metaphysics that could provide a foundation for the sciences is of the utmost ...
    Download  
     
    Export citation  
     
    Bookmark   253 citations  
  • Mathematical method and Newtonian science in the philosophy of Christian Wolff.Katherine Dunlop - 2013 - Studies in History and Philosophy of Science Part A 44 (3):457-469.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Philosophy of mathematics and mathematical practice in the seventeenth century.Paolo Mancosu (ed.) - 1996 - New York: Oxford University Press.
    The seventeenth century saw dramatic advances in mathematical theory and practice. With the recovery of many of the classical Greek mathematical texts, new techniques were introduced, and within 100 years, the rules of analytic geometry, geometry of indivisibles, arithmatic of infinites, and calculus were developed. Although many technical studies have been devoted to these innovations, Mancosu provides the first comprehensive account of the relationship between mathematical advances of the seventeenth century and the philosophy of mathematics of the period. Starting with (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Theoretical philosophy, 1755-1770.Immanuel Kant - 1992 - New York: Cambridge University Press. Edited by David Walford & Ralf Meerbote.
    This is the first volume of the first ever comprehensive edition of the works of Immanuel Kant in English translation. The eleven essays in this volume constitute Kant's theoretical, pre-critical philosophical writings from 1755 to 1770. Several of these pieces have never been translated into English before; others have long been unavailable in English. We can trace in these works the development of Kant's thought to the eventual emergence in 1770 of the two chief tenets of his mature philosophy: the (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • The development of Euclidean axiomatics: The systems of principles and the foundations of mathematics in editions of the Elements in the Early Modern Age.Vincenzo De Risi - 2016 - Archive for History of Exact Sciences 70 (6):591-676.
    The paper lists several editions of Euclid’s Elements in the Early Modern Age, giving for each of them the axioms and postulates employed to ground elementary mathematics.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Lectures on Logic.Patricia Kitcher, Immanuel Kant, J. Michael Young, Paul Guyer & Allen W. Wood - 1994 - Philosophical Review 103 (3):583.
    Download  
     
    Export citation  
     
    Bookmark   113 citations  
  • Mathematizing Space: The Objects of Geometry from Antiquity to the Early Modern Age.Vincenzo De Risi (ed.) - 2015 - Birkhäuser.
    This book brings together papers of the conference on 'Space, Geometry and the Imagination from Antiquity to the Modern Age' held in Berlin, Germany, 27-29 August 2012. Focusing on the interconnections between the history of geometry and the philosophy of space in the pre-Modern and Early Modern Age, the essays in this volume are particularly directed toward elucidating the complex epistemological revolution that transformed the classical geometry of figures into the modern geometry of space. Contributors: Graciela De Pierris Franco Farinelli (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dedekind and Hilbert on the foundations of the deductive sciences.Ansten Klev - 2011 - Review of Symbolic Logic 4 (4):645-681.
    We offer an interpretation of the words and works of Richard Dedekind and the David Hilbert of around 1900 on which they are held to entertain diverging views on the structure of a deductive science. Firstly, it is argued that Dedekind sees the beginnings of a science in concepts, whereas Hilbert sees such beginnings in axioms. Secondly, it is argued that for Dedekind, the primitive terms of a science are substantive terms whose sense is to be conveyed by elucidation, whereas (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Dedekind's Logicism†.Ansten Mørch Klev - 2015 - Philosophia Mathematica 25 (3):341-368.
    A detailed argument is provided for the thesis that Dedekind was a logicist about arithmetic. The rules of inference employed in Dedekind's construction of arithmetic are, by his lights, all purely logical in character, and the definitions are all explicit; even the definition of the natural numbers as the abstract type of simply infinite systems can be seen to be explicit. The primitive concepts of the construction are logical in their being intrinsically tied to the functioning of the understanding.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematics in Kant's Critical Philosophy.Emily Carson & Lisa Shabel (eds.) - 2015 - Routledge.
    There is a long tradition, in the history and philosophy of science, of studying Kant’s philosophy of mathematics, but recently philosophers have begun to examine the way in which Kant’s reflections on mathematics play a role in his philosophy more generally, and in its development. For example, in the Critique of Pure Reason , Kant outlines the method of philosophy in general by contrasting it with the method of mathematics; in the Critique of Practical Reason , Kant compares the Formula (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Frege, Dedekind, and the philosophy of mathematics.Philip Kitcher - 1986 - In Leila Haaparanta & Jaakko Hintikka (eds.), Frege Synthesized: Essays on the Philosophical and Foundational Work of Gottlob Frege. Dordrecht, Netherland: Kluwer Academic Publishers. pp. 299--343.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Frege, Dedekind, and the Origins of Logicism.Erich H. Reck - 2013 - History and Philosophy of Logic 34 (3):242-265.
    This paper has a two-fold objective: to provide a balanced, multi-faceted account of the origins of logicism; to rehabilitate Richard Dedekind as a main logicist. Logicism should be seen as more deeply rooted in the development of modern mathematics than typically assumed, and this becomes evident by reconsidering Dedekind's writings in relation to Frege's. Especially in its Dedekindian and Fregean versions, logicism constitutes the culmination of the rise of ?pure mathematics? in the nineteenth century; and this rise brought with it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Lectures on logic.Immanuel Kant (ed.) - 1992 - New York: Cambridge University Press.
    Kant's views on logic and logical theory play an important role in his critical writings, especially the Critique of Pure Reason. However, since he published only one short essay on the subject, we must turn to the texts derived from his logic lectures to understand his views. The present volume includes three previously untranslated transcripts of Kant's logic lectures: the Blumberg Logic from the 1770s; the Vienna Logic (supplemented by the recently discovered Hechsel Logic) from the early 1780s; and the (...)
    Download  
     
    Export citation  
     
    Bookmark   130 citations  
  • The development of Euclidean axiomatics.Vincenzo Risi - 2016 - Archive for History of Exact Sciences 70 (6):591-676.
    The paper lists several editions of Euclid’s Elements in the Early Modern Age, giving for each of them the axioms and postulates employed to ground elementary mathematics.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Dedekind’s structuralism: creating concepts and deriving theorems.Wilfried Sieg & Rebecca Morris - 2018 - In Reck Erich (ed.), Logic, Philosophy of Mathematics, and their History: Essays in Honor W.W. Tait. London, UK: College Publications.
    Dedekind’s structuralism is a crucial source for the structuralism of mathematical practice—with its focus on abstract concepts like groups and fields. It plays an equally central role for the structuralism of philosophical analysis—with its focus on particular mathematical objects like natural and real numbers. Tensions between these structuralisms are palpable in Dedekind’s work, but are resolved in his essay Was sind und was sollen die Zahlen? In a radical shift, Dedekind extends his mathematical approach to “the” natural numbers. He creates (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Dedekind's structuralism: An interpretation and partial defense.Erich H. Reck - 2003 - Synthese 137 (3):369 - 419.
    Various contributors to recent philosophy of mathematics havetaken Richard Dedekind to be the founder of structuralismin mathematics. In this paper I examine whether Dedekind did, in fact, hold structuralist views and, insofar as that is the case, how they relate to the main contemporary variants. In addition, I argue that his writings contain philosophical insights that are worth reexamining and reviving. The discussion focusses on Dedekind''s classic essay Was sind und was sollen die Zahlen?, supplemented by evidence from Stetigkeit und (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Die aristotelische Konzeption der Mathematik.Ulrich Felgner - 2020 - In Philosophie der Mathematik in der Antike und in der Neuzeit. Cham: Birkhäuser. pp. 27-43.
    Aristotelês (Ἀριστοτέλης) wurde 384 v.u.Z. in Stageira (im Grenzgebiet zwischen Thrakien und Makedonien) geboren. Er trat 367 in Platons „Akademie“ ein und blieb ihr Mitglied bis zu Platons Tod im Jahre 348/347. Im Jahre 343 wurde er am makedonischen Königshof Lehrer des damals 13-jährigen Alexander (später ;der Große‘ genannt). 336 kehrte er nach Athen zurück und wurde schon bald darauf Leiter des Lykeions. Zum Gebäude gehörte eine Wandelhalle (Peripatos, περίπατος). Die Mitglieder dieser Schule wurden daher „Peripatetiker“ genannt (περιπατέω = herumgehen).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Theoretical Philosophy, 1755-1770.Immanuel Kant, David Walford, Ralf Meerbote & J. Michael Young - 1995 - Erkenntnis 43 (3):405-410.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Relative consistency and accessible domains.Wilfried Sieg - 1990 - Synthese 84 (2):259 - 297.
    Wilfred Sieg. Relative Consistency and Accesible Domains.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Labyrinth of Thought. A history of set theory and its role in modern mathematics.Jose Ferreiros - 2001 - Basel, Boston: Birkhäuser Verlag.
    Review by A. Kanamori, Boston University (author of The Higher Infinite), review in The Bulletin of Symbolic Logic: “Notwithstanding and braving the daunting complexities of this labyrinth, José Ferreirós has written a magisterial account of the history of set theory which is panoramic, balanced and engaging. Not only does this book synthesize much previous work and provide fresh insights and points of view, but it also features a major innovation, a full-fledged treatment of the emergence of the set-theoretic approach in (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • The Classical Model of Science: a millennia-old model of scientific rationality.Willem Jong & Arianna Betti - 2010 - Synthese 174 (2):185-203.
    Throughout more than two millennia philosophers adhered massively to ideal standards of scientific rationality going back ultimately to Aristotle’s Analytica posteriora. These standards got progressively shaped by and adapted to new scientific needs and tendencies. Nevertheless, a core of conditions capturing the fundamentals of what a proper science should look like remained remarkably constant all along. Call this cluster of conditions the Classical Model of Science. In this paper we will do two things. First of all, we will propose a (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Frege meets dedekind: A neologicist treatment of real analysis.Stewart Shapiro - 2000 - Notre Dame Journal of Formal Logic 41 (4):335--364.
    This paper uses neo-Fregean-style abstraction principles to develop the integers from the natural numbers (assuming Hume’s principle), the rational numbers from the integers, and the real numbers from the rationals. The first two are first-order abstractions that treat pairs of numbers: (DIF) INT(a,b)=INT(c,d) ≡ (a+d)=(b+c). (QUOT) Q(m,n)=Q(p,q) ≡ (n=0 & q=0) ∨ (n≠0 & q≠0 & m⋅q=n⋅p). The development of the real numbers is an adaption of the Dedekind program involving “cuts” of rational numbers. Let P be a property (of (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Schroeder's Die Operationskreis des Logikkalkuls. [REVIEW]C. A. Foley - 1878 - Mind 3:252.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A Road Map of Dedekind’s Theorem 66.Ansten Klev - 2018 - Hopos: The Journal of the International Society for the History of Philosophy of Science 8 (2):241-277.
    Richard Dedekind’s theorem 66 states that there exists an infinite set. Its proof invokes such apparently nonmathematical notions as the thought-world and the self. This article discusses the content and context of Dedekind’s proof. It is suggested that Dedekind took the notion of the thought-world from Hermann Lotze. The influence of Kant and Bernard Bolzano on the proof is also discussed, and the reception of the proof in the mathematical and philosophical literature is covered in detail.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Functions and Generality of Logic: Reflections on Dedekind's and Frege's Logicisms.Gabriel Sandu, Marco Panza & Hourya Benis-Sinaceur (eds.) - 2015 - Cham, Switzerland: Springer Verlag.
    Part I of Frege’s Grundgesetze is devoted to the “exposition [Darlegung]” of his formal system.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Frege versus Cantor and Dedekind: On the Concept of Number.W. W. Tait - 1996 - In Matthias Schirn (ed.), Frege: Importance and Legacy. New York: De Gruyter. pp. 70-113.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Was Sind und was Sollen Die Zahlen?Richard Dedekind - 1888 - Cambridge University Press.
    This influential 1888 publication explained the real numbers, and their construction and properties, from first principles.
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • Dedekind’s Analysis of Number: Systems and Axioms.Wilfried Sieg & Dirk Schlimm - 2005 - Synthese 147 (1):121-170.
    Wilfred Sieg and Dirk Schlimm. Dedekind's Analysis of Number: Systems and Axioms.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The Logicism of Frege, Dedekind, and Russell.William Demopoulos & Peter Clark - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 129--165.
    The common thread running through the logicism of Frege, Dedekind, and Russell is their opposition to the Kantian thesis that our knowledge of arithmetic rests on spatio-temporal intuition. Our critical exposition of the view proceeds by tracing its answers to three fundamental questions: What is the basis for our knowledge of the infinity of the numbers? How is arithmetic applicable to reality? Why is reasoning by induction justified?
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Kant on arithmetic, algebra, and the theory of proportions.Daniel Sutherland - 2006 - Journal of the History of Philosophy 44 (4):533-558.
    Daniel Sutherland - Kant on Arithmetic, Algebra, and the Theory of Proportions - Journal of the History of Philosophy 44:4 Journal of the History of Philosophy 44.4 533-558 Muse Search Journals This Journal Contents Kant on Arithmetic, Algebra, and the Theory of Proportions Daniel Sutherland Kant's philosophy of mathematics has both enthralled and exercised philosophers since the appearance of the Critique of Pure Reason. Neither the Critique nor any other work provides a sustained and focused account of his mature views (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On Plato, Meno 5. By C.W.F.A. Wolf. In Lat. Progr., Halle.Christian Wilhelm Friedrich A. Wolf - 1795
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • The Classical Model of Science: a Millennia-Old Model of Scientific Rationality.Jong W. R. De & A. Betti - unknown
    Download  
     
    Export citation  
     
    Bookmark   29 citations