Switch to: Citations

Add references

You must login to add references.
  1. The Broadest Necessity.Andrew Bacon - 2018 - Journal of Philosophical Logic 47 (5):733-783.
    In this paper the logic of broad necessity is explored. Definitions of what it means for one modality to be broader than another are formulated, and it is proven, in the context of higher-order logic, that there is a broadest necessity, settling one of the central questions of this investigation. It is shown, moreover, that it is possible to give a reductive analysis of this necessity in extensional language. This relates more generally to a conjecture that it is not possible (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • On the Plurality of Worlds.David Lewis - 1986 - Revue Philosophique de la France Et de l'Etranger 178 (3):388-390.
    Download  
     
    Export citation  
     
    Bookmark   2837 citations  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The potential hierarchy of sets.Øystein Linnebo - 2013 - Review of Symbolic Logic 6 (2):205-228.
    Some reasons to regard the cumulative hierarchy of sets as potential rather than actual are discussed. Motivated by this, a modal set theory is developed which encapsulates this potentialist conception. The resulting theory is equi-interpretable with Zermelo Fraenkel set theory but sheds new light on the set-theoretic paradoxes and the foundations of set theory.
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • (1 other version)Can there be vague objects?Gareth Evans - 1978 - Analysis 38 (4):208.
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • Putnam’s paradox.David Lewis - 1984 - Australasian Journal of Philosophy 62 (3):221 – 236.
    Download  
     
    Export citation  
     
    Bookmark   424 citations  
  • Classicism.Andrew Bacon & Cian Dorr - 2024 - In Peter Fritz & Nicholas K. Jones (eds.), Higher-Order Metaphysics. Oxford University Press. pp. 109-190.
    This three-part chapter explores a higher-order logic we call ‘Classicism’, which extends a minimal classical higher-order logic with further axioms which guarantee that provable coextensiveness is sufficient for identity. The first part presents several different ways of axiomatizing this theory and makes the case for its naturalness. The second part discusses two kinds of extensions of Classicism: some which take the view in the direction of coarseness of grain (whose endpoint is the maximally coarse-grained view that coextensiveness is sufficient for (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Propositions.Robert C. Stalnaker - 1976 - In Alfred F. Mackay & Daniel Davy Merrill (eds.), Issues in the philosophy of language: proceedings of the 1972 Oberlin Colloquium in Philosophy. New Haven: Yale University Press. pp. 79-91.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Which undecidable mathematical sentences have determinate truth values.Hartry Field - 1998 - In Harold Garth Dales & Gianluigi Oliveri (eds.), Truth in mathematics. New York: Oxford University Press, Usa. pp. 291--310.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
    The multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous range of set-theoretic possibilities, a phenomenon that challenges the universe (...)
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • (1 other version)Philosophy of logic.Willard Van Orman Quine - 1986 - Cambridge: Harvard University Press. Edited by Simon Blackburn & Keith Simmons.
    Download  
     
    Export citation  
     
    Bookmark   478 citations  
  • Does mathematics need new axioms.Solomon Feferman, Harvey M. Friedman, Penelope Maddy & John R. Steel - 1999 - Bulletin of Symbolic Logic 6 (4):401-446.
    Part of the ambiguity lies in the various points of view from which this question might be considered. The crudest di erence lies between the point of view of the working mathematician and that of the logician concerned with the foundations of mathematics. Now some of my fellow mathematical logicians might protest this distinction, since they consider themselves to be just more of those \working mathematicians". Certainly, modern logic has established itself as a very respectable branch of mathematics, and there (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • A Metasemantic Challenge for Mathematical Determinacy.Jared Warren & Daniel Waxman - 2020 - Synthese 197 (2):477-495.
    This paper investigates the determinacy of mathematics. We begin by clarifying how we are understanding the notion of determinacy before turning to the questions of whether and how famous independence results bear on issues of determinacy in mathematics. From there, we pose a metasemantic challenge for those who believe that mathematical language is determinate, motivate two important constraints on attempts to meet our challenge, and then use these constraints to develop an argument against determinacy and discuss a particularly popular approach (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • How we learn mathematical language.Vann McGee - 1997 - Philosophical Review 106 (1):35-68.
    Mathematical realism is the doctrine that mathematical objects really exist, that mathematical statements are either determinately true or determinately false, and that the accepted mathematical axioms are predominantly true. A realist understanding of set theory has it that when the sentences of the language of set theory are understood in their standard meaning, each sentence has a determinate truth value, so that there is a fact of the matter whether the cardinality of the continuum is א2 or whether there are (...)
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • (1 other version)A formulation of the simple theory of types.Alonzo Church - 1940 - Journal of Symbolic Logic 5 (2):56-68.
    Download  
     
    Export citation  
     
    Bookmark   226 citations  
  • (1 other version)Grundlagen der Arithmetik: Studienausgabe mit dem Text der Centenarausgabe.Gottlob Frege - 1884 - Breslau: Wilhelm Koebner Verlag.
    Die Grundlagen gehören zu den klassischen Texten der Sprachphilosophie, Logik und Mathematik. Frege stützt sein Programm einer Begründung von Arithmetik und Analysis auf reine Logik, indem er die natürlichen Zahlen als bestimmte Begriffsumfänge definiert. Die philosophische Fundierung des Fregeschen Ansatzes bilden erkenntnistheoretische und sprachphilosophische Analysen und Begriffserklärungen. Studienausgabe aufgrund der textkritisch herausgegebenen Jubiläumsausgabe (Centenarausgabe). Mit Einleitung, Anmerkungen, Literaturverzeichnis und Namenregister.
    Download  
     
    Export citation  
     
    Bookmark   309 citations  
  • (1 other version)Can there be vague objects?Gareth Evans - 2004 - In Tim Crane & Katalin Farkas (eds.), Metaphysics: a guide and anthology. New York: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   156 citations  
  • Mathematical Thought and its Objects.Charles Parsons - 2007 - New York: Cambridge University Press.
    Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Is the Dream Solution of the Continuum Hypothesis Attainable?Joel David Hamkins - 2015 - Notre Dame Journal of Formal Logic 56 (1):135-145.
    The dream solution of the continuum hypothesis would be a solution by which we settle the continuum hypothesis on the basis of a newly discovered fundamental principle of set theory, a missing axiom, widely regarded as true. Such a dream solution would indeed be a solution, since we would all accept the new axiom along with its consequences. In this article, however, I argue that such a dream solution to $\mathrm {CH}$ is unattainable.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (2 other versions)Philosophy of Logic.W. V. Quine - 2005-01-01 - In José Medina & David Wood (eds.), Truth. Blackwell.
    Download  
     
    Export citation  
     
    Bookmark   403 citations  
  • (1 other version)A Formulation of the Simple Theory of Types.Alonzo Church - 1940 - Journal of Symbolic Logic 5 (3):114-115.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • (2 other versions)Philosophy of Logic.Michael Jubien & W. V. Quine - 1988 - Journal of Symbolic Logic 53 (1):303.
    Download  
     
    Export citation  
     
    Bookmark   229 citations  
  • Multiple universes of sets and indeterminate truth values.Donald A. Martin - 2001 - Topoi 20 (1):5-16.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Was Sind und was Sollen Die Zahlen?Richard Dedekind - 1888 - Cambridge University Press.
    This influential 1888 publication explained the real numbers, and their construction and properties, from first principles.
    Download  
     
    Export citation  
     
    Bookmark   182 citations