Switch to: Citations

Add references

You must login to add references.
  1. Learning the Natural Numbers as a Child.Stefan Buijsman - 2017 - Noûs 53 (1):3-22.
    How do we get out knowledge of the natural numbers? Various philosophical accounts exist, but there has been comparatively little attention to psychological data on how the learning process actually takes place. I work through the psychological literature on number acquisition with the aim of characterising the acquisition stages in formal terms. In doing so, I argue that we need a combination of current neologicist accounts and accounts such as that of Parsons. In particular, I argue that we learn the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Exact and Approximate Arithmetic in an Amazonian Indigene Group.Pierre Pica, Cathy Lemer, Véronique Izard & Stanislas Dehaene - 2004 - Science 306 (5695):499-503.
    Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers larger than 4 (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Does learning to count involve a semantic induction?Kathryn Davidson, Kortney Eng & David Barner - 2012 - Cognition 123 (1):162-173.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Précis of the number sense.Stanislas Dehaene - 2001 - Mind and Language 16 (1):16–36.
    ‘Number sense’ is a short‐hand for our ability to quickly understand, approximate, and manipulate numerical quantities. My hypothesis is that number sense rests on cerebral circuits that have evolved specifically for the purpose of representing basic arithmetic knowledge. Four lines of evidence suggesting that number sense constitutes a domain‐specific, biologically‐determined ability are reviewed: the presence of evolutionary precursors of arithmetic in animals; the early emergence of arithmetic competence in infants independently of other abilities, including language; the existence of a homology (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles.Mathieu Le Corre & Susan Carey - 2007 - Cognition 105 (2):395-438.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Children's understanding of counting.Karen Wynn - 1990 - Cognition 36 (2):155-193.
    Download  
     
    Export citation  
     
    Bookmark   143 citations  
  • Acquiring mathematical concepts: The viability of hypothesis testing.Stefan Buijsman - 2021 - Mind and Language 36 (1):48-61.
    Can concepts be acquired by testing hypotheses about these concepts? Fodor famously argued that this is not possible. Testing the correct hypothesis would require already possessing the concept. I argue that this does not generally hold for mathematical concepts. I discuss specific, empirically motivated, hypotheses for number concepts that can be tested without needing to possess the relevant number concepts. I also argue that one can test hypotheses about the identity conditions of other mathematical concepts, and then fix the application (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Preverbal and verbal counting and computation.C. R. Gallistel & Rochel Gelman - 1992 - Cognition 44 (1-2):43-74.
    Download  
     
    Export citation  
     
    Bookmark   175 citations  
  • Meaning before order: Cardinal principle knowledge predicts improvement in understanding the successor principle and exact ordering.Elizabet Spaepen, Elizabeth A. Gunderson, Dominic Gibson, Susan Goldin-Meadow & Susan C. Levine - 2018 - Cognition 180 (C):59-81.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The generative basis of natural number concepts.Alan M. Leslie, Rochel Gelman & C. R. Gallistel - 2008 - Trends in Cognitive Sciences 12 (6):213-218.
    Number concepts must support arithmetic inference. Using this principle, it can be argued that the integer concept of exactly ONE is a necessary part of the psychological foundations of number, as is the notion of the exact equality - that is, perfect substitutability. The inability to support reasoning involving exact equality is a shortcoming in current theories about the development of numerical reasoning. A simple innate basis for the natural number concepts can be proposed that embodies the arithmetic principle, supports (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • From numerical concepts to concepts of number.Lance J. Rips, Amber Bloomfield & Jennifer Asmuth - 2008 - Behavioral and Brain Sciences 31 (6):623-642.
    Many experiments with infants suggest that they possess quantitative abilities, and many experimentalists believe that these abilities set the stage for later mathematics: natural numbers and arithmetic. However, the connection between these early and later skills is far from obvious. We evaluate two possible routes to mathematics and argue that neither is sufficient: (1) We first sketch what we think is the most likely model for infant abilities in this domain, and we examine proposals for extrapolating the natural number concept (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • How counting represents number: What children must learn and when they learn it.Barbara W. Sarnecka & Susan Carey - 2008 - Cognition 108 (3):662-674.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Why the verbal counting principles are constructed out of representations of small sets of individuals: A reply to Gallistel.Mathieu Le Corre & Susan Carey - 2008 - Cognition 107 (2):650-662.
    Download  
     
    Export citation  
     
    Bookmark   7 citations