Switch to: References

Add citations

You must login to add citations.
  1. Bootstrapping Concepts via Hybridization: A Step-by-step Guide.Matteo De Benedetto & Nina Poth - forthcoming - Review of Philosophy and Psychology.
    Carey’s (2009) account of bootstrapping in developmental psychology has been criticized out of a lack of theoretical precision and because of its alleged circularity (Rips et al. 2013, Cognition 128 (3): 320–330; Fodor 2010, Times Literary Supplement, 7–8; Rey 2014, Mind & Language 29 (2): 109–132). In this paper, we respond to these criticisms by connecting the debate on bootstrapping with recent accounts of conceptual creativity in philosophy of science. Specifically, we build on Nersessian’s (2010) hybrid-models-based theory of scientific conceptual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Number Nativism.Sam Clarke - forthcoming - Philosophy and Phenomenological Research.
    Number Nativism is the view that humans innately represent precise natural numbers. Despite a long and venerable history, it is often considered hopelessly out of touch with the empirical record. I argue that this is a mistake. After clarifying Number Nativism and distancing it from related conjectures, I distinguish three arguments which have been seen to refute the view. I argue that, while popular, two of these arguments miss the mark, and fail to place pressure on Number Nativism. Meanwhile, a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Number Concepts: An Interdisciplinary Inquiry.Richard Samuels & Eric Snyder - 2024 - Cambridge University Press.
    This Element, written for researchers and students in philosophy and the behavioral sciences, reviews and critically assesses extant work on number concepts in developmental psychology and cognitive science. It has four main aims. First, it characterizes the core commitments of mainstream number cognition research, including the commitment to representationalism, the hypothesis that there exist certain number-specific cognitive systems, and the key milestones in the development of number cognition. Second, it provides a taxonomy of influential views within mainstream number cognition research, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Numbers, numerosities, and new directions.Jacob Beck & Sam Clarke - 2021 - Behavioral and Brain Sciences 44:1-20.
    In our target article, we argued that the number sense represents natural and rational numbers. Here, we respond to the 26 commentaries we received, highlighting new directions for empirical and theoretical research. We discuss two background assumptions, arguments against the number sense, whether the approximate number system represents numbers or numerosities, and why the ANS represents rational numbers.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How Do We Semantically Individuate Natural Numbers?†.Stefan Buijsman - forthcoming - Philosophia Mathematica.
    ABSTRACT How do non-experts single out numbers for reference? Linnebo has argued that they do so using a criterion of identity based on the ordinal properties of numerals. Neo-logicists, on the other hand, claim that cardinal properties are the basis of individuation, when they invoke Hume’s Principle. I discuss empirical data from cognitive science and linguistics to answer how non-experts individuate numbers better in practice. I use those findings to develop an alternative account that mixes ordinal and cardinal properties to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Early numerical cognition and mathematical processes.Markus Pantsar - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):285-304.
    In this paper I study the development of arithmetical cognition with the focus on metaphorical thinking. In an approach developing on Lakoff and Núñez, I propose one particular conceptual metaphor, the Process → Object Metaphor, as a key element in understanding the development of mathematical thinking.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A dissociation between small and large numbers in young children’s ability to “solve for x” in non-symbolic math problems.Melissa M. Kibbe & Lisa Feigenson - 2017 - Cognition 160 (C):82-90.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Learning the Natural Numbers as a Child.Stefan Buijsman - 2017 - Noûs 53 (1):3-22.
    How do we get out knowledge of the natural numbers? Various philosophical accounts exist, but there has been comparatively little attention to psychological data on how the learning process actually takes place. I work through the psychological literature on number acquisition with the aim of characterising the acquisition stages in formal terms. In doing so, I argue that we need a combination of current neologicist accounts and accounts such as that of Parsons. In particular, I argue that we learn the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Cognitive access to numbers: The philosophical significance of empirical findings about basic number abilities.Marcus Giaquinto - unknown
    How can we acquire a grasp of cardinal numbers, even the first very small positive cardinal numbers, given that they are abstract mathematical entities? That problem of cognitive access is the main focus of this paper. All the major rival views about the nature and existence of cardinal numbers face difficulties; and the view most consonant with our normal thought and talk about numbers, the view that cardinal numbers are sizes of sets, runs into the cognitive access problem. The source (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Education Enhances the Acuity of the Nonverbal Approximate Number System.Manuela Piazza, Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2013 - Psychological Science 24 (4):p.
    All humans share a universal, evolutionarily ancient approximate number system (ANS) that estimates and combines the numbers of objects in sets with ratio-limited precision. Interindividual variability in the acuity of the ANS correlates with mathematical achievement, but the causes of this correlation have never been established. We acquired psychophysical measures of ANS acuity in child and adult members of an indigene group in the Amazon, the Mundurucú, who have a very restricted numerical lexicon and highly variable access to mathematics education. (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Numerical Architecture.Eric Mandelbaum - 2013 - Topics in Cognitive Science 5 (1):367-386.
    The idea that there is a “Number Sense” (Dehaene, 1997) or “Core Knowledge” of number ensconced in a modular processing system (Carey, 2009) has gained popularity as the study of numerical cognition has matured. However, these claims are generally made with little, if any, detailed examination of which modular properties are instantiated in numerical processing. In this article, I aim to rectify this situation by detailing the modular properties on display in numerical cognitive processing. In the process, I review literature (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Concrete magnitudes: From numbers to time.Christine Falter, Valdas Noreika, Julian Kiverstein & Bruno Mölder - 2009 - Behavioral and Brain Sciences 32 (3-4):335-336.
    Cohen Kadosh & Walsh (CK&W) present convincing evidence indicating the existence of notation-specific numerical representations in parietal cortex. We suggest that the same conclusions can be drawn for a particular type of numerical representation: the representation of time. Notation-dependent representations need not be limited to number but may also be extended to other magnitude-related contents processed in parietal cortex (Walsh 2003).
    Download  
     
    Export citation  
     
    Bookmark  
  • Exact equality and successor function: Two key concepts on the path towards understanding exact numbers.Véronique Izard, Pierre Pica, Elizabeth S. Spelke & Stanislas Dehaene - 2008 - Philosophical Psychology 21 (4):491 – 505.
    Humans possess two nonverbal systems capable of representing numbers, both limited in their representational power: the first one represents numbers in an approximate fashion, and the second one conveys information about small numbers only. Conception of exact large numbers has therefore been thought to arise from the manipulation of exact numerical symbols. Here, we focus on two fundamental properties of the exact numbers as prerequisites to the concept of EXACT NUMBERS : the fact that all numbers can be generated by (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Do humans have two systems to track beliefs and belief-like states?Stephen Andrew Butterfill & Ian A. Apperly - 2009 - Psychological Review 116 (4):953-970.
    The lack of consensus on how to characterize humans’ capacity for belief reasoning has been brought into sharp focus by recent research. Children fail critical tests of belief reasoning before 3 to 4 years (Wellman, Cross, & Watson, 2001; Wimmer & Perner, 1983), yet infants apparently pass false belief tasks at 13 or 15 months (Onishi & Baillargeon, 2005; Surian, Caldi, & Sperber, 2007). Non-human animals also fail critical tests of belief reasoning but can show very complex social behaviour (e.g., (...)
    Download  
     
    Export citation  
     
    Bookmark   254 citations  
  • Happy Little Benefactor: Prosocial Behaviors Promote Happiness in Young Children From Two Cultures.Yue Song, Martine Louise Broekhuizen & Judith Semon Dubas - 2020 - Frontiers in Psychology 11.
    Download  
     
    Export citation  
     
    Bookmark  
  • Neurophilosophy of Number.Hourya Benis Sinaceur - 2017 - International Studies in the Philosophy of Science 31 (1):1-25.
    Neurosciences and cognitive sciences provide us with myriad empirical findings that shed light on hypothesised primitive numerical processes in the brain and in the mind. Yet, the hypotheses on which the experiments are based, and hence the results, depend strongly on sophisticated abstract models used to describe and explain neural data or cognitive representations that supposedly are the empirical roots of primary arithmetical activity. I will question the foundational role of such models. I will even cast doubt upon the search (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Does learning to count involve a semantic induction?Kathryn Davidson, Kortney Eng & David Barner - 2012 - Cognition 123 (1):162-173.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Bootstrapping in a language of thought: A formal model of numerical concept learning.Steven T. Piantadosi, Joshua B. Tenenbaum & Noah D. Goodman - 2012 - Cognition 123 (2):199-217.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Assessing the knower-level framework: How reliable is the Give-a-Number task?Elisabeth Marchand, Jarrett T. Lovelett, Kelly Kendro & David Barner - 2022 - Cognition 222 (C):104998.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bootstrapping of integer concepts: the stronger deviant-interpretation challenge.Markus Pantsar - 2021 - Synthese 199 (3-4):5791-5814.
    Beck presents an outline of the procedure of bootstrapping of integer concepts, with the purpose of explicating the account of Carey. According to that theory, integer concepts are acquired through a process of inductive and analogous reasoning based on the object tracking system, which allows individuating objects in a parallel fashion. Discussing the bootstrapping theory, Beck dismisses what he calls the "deviant-interpretation challenge"—the possibility that the bootstrapped integer sequence does not follow a linear progression after some point—as being general to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Is thirty-two three tens and two ones? The embedded structure of cardinal numbers.Diego Guerrero, Jihyun Hwang, Brynn Boutin, Tom Roeper & Joonkoo Park - 2020 - Cognition 203 (C):104331.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Small Number System.Eric Margolis - 2020 - Philosophy of Science 87 (1):113-134.
    I argue that the human mind includes an innate domain-specific system for representing precise small numerical quantities. This theory contrasts with object-tracking theories and with domain-general theories that only make use of mental models. I argue that there is a good amount of evidence for innate representations of small numerical quantities and that such a domain-specific system has explanatory advantages when infants’ poor working memory is taken into account. I also show that the mental models approach requires previously unnoticed domain-specific (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Disentangling the Mechanisms of Symbolic Number Processing in Adults’ Mathematics and Arithmetic Achievement.Josetxu Orrantia, David Muñez, Laura Matilla, Rosario Sanchez, Sara San Romualdo & Lieven Verschaffel - 2019 - Cognitive Science 43 (1).
    A growing body of research has shown that symbolic number processing relates to individual differences in mathematics. However, it remains unclear which mechanisms of symbolic number processing are crucial—accessing underlying magnitude representation of symbols (i.e., symbol‐magnitude associations), processing relative order of symbols (i.e., symbol‐symbol associations), or processing of symbols per se. To address this question, in this study adult participants performed a dots‐number word matching task—thought to be a measure of symbol‐magnitude associations (numerical magnitude processing)—a numeral‐ordering task that focuses on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling.Camilla K. Gilmore, Shannon E. McCarthy & Elizabeth S. Spelke - 2010 - Cognition 115 (3):394-406.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Language as a Necessary Condition for Complex Mental Content: A Review of the Discussion on Spatial and Mathematical Thinking. [REVIEW]Arkadiusz Gut & Robert Mirski - 2018 - Roczniki Filozoficzne 66 (3):33-56.
    In this article we review the discussion over the thesis that language serves as an integrator of contents coming from different cognitive modules. After presenting the theoretical considerations, we examine two strands of empirical research that tested the hypothesis — spatial cognition and mathematical cognition. The idea shared by both of them is that each is composed of two separate modules processing information of a specific kind. For spatial thinking these are geometric information about the location of the object and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Faculty of Language Integrates the Two Core Systems of Number.Ken Hiraiwa - 2017 - Frontiers in Psychology 8.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Spatial complexity of character-based writing systems and arithmetic in primary school: a longitudinal study.Maja Rodic, Tatiana Tikhomirova, Tatiana Kolienko, Sergey Malykh, Olga Bogdanova, Dina Y. Zueva, Elena I. Gynku, Sirui Wan, Xinlin Zhou & Yulia Kovas - 2015 - Frontiers in Psychology 6.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nonsymbolic approximate arithmetic in children: Abstract addition prior to instruction.(Manuscript under review.Hilary Barth, Lacey Beckmann & Elizabeth S. Spelke - 2008 - Developmental Psychology 44 (5).
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children.Daniel C. Hyde, Saeeda Khanum & Elizabeth S. Spelke - 2014 - Cognition 131 (1):92-107.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Connecting numbers to discrete quantification: A step in the child’s construction of integer concepts.Emily Slusser, Annie Ditta & Barbara Sarnecka - 2013 - Cognition 129 (1):31-41.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Young children’s mapping between arrays, number words, and digits.Laurent Benoit, Henri Lehalle, Michèle Molina, Charles Tijus & François Jouen - 2013 - Cognition 129 (1):95-101.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Calibrating the mental number line.Véronique Izard & Stanislas Dehaene - 2008 - Cognition 106 (3):1221-1247.
    Human adults are thought to possess two dissociable systems to represent numbers: an approximate quantity system akin to a mental number line, and a verbal system capable of representing numbers exactly. Here, we study the interface between these two systems using an estimation task. Observers were asked to estimate the approximate numerosity of dot arrays. We show that, in the absence of calibration, estimates are largely inaccurate: responses increase monotonically with numerosity, but underestimate the actual numerosity. However, insertion of a (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Précis of the origin of concepts.Susan Carey - 2011 - Behavioral and Brain Sciences 34 (3):113-124.
    A theory of conceptual development must specify the innate representational primitives, must characterize the ways in which the initial state differs from the adult state, and must characterize the processes through which one is transformed into the other. The Origin of Concepts (henceforth TOOC) defends three theses. With respect to the initial state, the innate stock of primitives is not limited to sensory, perceptual, or sensorimotor representations; rather, there are also innate conceptual representations. With respect to developmental change, conceptual development (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • The innateness hypothesis and mathematical concepts.Helen3 De Cruz & Johan De Smedt - 2010 - Topoi 29 (1):3-13.
    In historical claims for nativism, mathematics is a paradigmatic example of innate knowledge. Claims by contemporary developmental psychologists of elementary mathematical skills in human infants are a legacy of this. However, the connection between these skills and more formal mathematical concepts and methods remains unclear. This paper assesses the current debates surrounding nativism and mathematical knowledge by teasing them apart into two distinct claims. First, in what way does the experimental evidence from infants, nonhuman animals and neuropsychology support the nativist (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The meaning of 'most': Semantics, numerosity and psychology.Paul Pietroski, Jeffrey Lidz, Tim Hunter & Justin Halberda - 2009 - Mind and Language 24 (5):554-585.
    The meaning of 'most' can be described in many ways. We offer a framework for distinguishing semantic descriptions, interpreted as psychological hypotheses that go beyond claims about sentential truth conditions, and an experiment that tells against an attractive idea: 'most' is understood in terms of one-to-one correspondence. Adults evaluated 'Most of the dots are yellow', as true or false, on many trials in which yellow dots and blue dots were displayed for 200 ms. Displays manipulated the ease of using a (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Dissonances in theories of number understanding.Lance J. Rips, Amber Bloomfield & Jennifer Asmuth - 2008 - Behavioral and Brain Sciences 31 (6):671-687.
    Traditional theories of how children learn the positive integers start from infants' abilities in detecting the quantity of physical objects. Our target article examined this view and found no plausible accounts of such development. Most of our commentators appear to agree that no adequate developmental theory is presently available, but they attempt to hold onto a role for early enumeration. Although some defend the traditional theories, others introduce new basic quantitative abilities, new methods of transformation, or new types of end (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The plural counts: Inconsistent grammatical number hinders numerical development in preschoolers — A cross-linguistic study.Maciej Haman, Katarzyna Lipowska, Mojtaba Soltanlou, Krzysztof Cipora, Frank Domahs & Hans-Christoph Nuerk - 2023 - Cognition 235 (C):105383.
    Download  
     
    Export citation  
     
    Bookmark  
  • Noema and Noesis. Part II: Functions of Noematic Synthesis.Wojciech Krysztofiak - 2020 - Axiomathes 30 (3):269-287.
    In the paper, being the second part of the work entitled Noema and Noesis, the formal model of the noematic synthesis functions is presented. Together with functions of noetic synthesis, they are understood as components of functions of intentional reference, which are to be, in turn, formalizations of intentional acts of reference performed in the stream of consciousness. Noemata are understood as mental representations associated with mental worlds. The processes of their synthesis in the mind engage the work of many (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Spatial and Verbal Routes to Number Comparison in Young Children.Francesco Sella, Daniela Lucangeli & Marco Zorzi - 2018 - Frontiers in Psychology 9.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Preschool children use space, rather than counting, to infer the numerical magnitude of digits: Evidence for a spatial mapping principle.Francesco Sella, Ilaria Berteletti, Daniela Lucangeli & Marco Zorzi - 2017 - Cognition 158 (C):56-67.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Gesture as a window onto children’s number knowledge.Elizabeth A. Gunderson, Elizabet Spaepen, Dominic Gibson, Susan Goldin-Meadow & Susan C. Levine - 2015 - Cognition 144 (C):14-28.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Concept innateness, concept continuity, and bootstrapping.Susan Carey - 2011 - Behavioral and Brain Sciences 34 (3):152.
    The commentators raised issues relevant to all three important theses of The Origin of Concepts (henceforth TOOC). Some questioned the very existence of innate representational primitives, and others questioned my claims about their richness and whether they should be thought of as concepts. Some questioned the existence of conceptual discontinuity in the course of knowledge acquisition and others argued that discontinuity is much more common than was portrayed in TOOC. Some raised issues with my characterization of Quinian bootstrapping, and others (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The logical syntax of number words: theory, acquisition and processing.Julien Musolino - 2009 - Cognition 111 (1):24-45.
    Recent work on the acquisition of number words has emphasized the importance of integrating linguistic and developmental perspectives [Musolino, J. (2004). The semantics and acquisition of number words: Integrating linguistic and developmental perspectives. Cognition93, 1-41; Papafragou, A., Musolino, J. (2003). Scalar implicatures: Scalar implicatures: Experiments at the semantics-pragmatics interface. Cognition, 86, 253-282; Hurewitz, F., Papafragou, A., Gleitman, L., Gelman, R. (2006). Asymmetries in the acquisition of numbers and quantifiers. Language Learning and Development, 2, 76-97; Huang, Y. T., Snedeker, J., Spelke, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mental Magnitudes and Increments of Mental Magnitudes.Matthew Katz - 2013 - Review of Philosophy and Psychology 4 (4):675-703.
    There is at present a lively debate in cognitive psychology concerning the origin of natural number concepts. At the center of this debate is the system of mental magnitudes, an innately given cognitive mechanism that represents cardinality and that performs a variety of arithmetical operations. Most participants in the debate argue that this system cannot be the sole source of natural number concepts, because they take it to represent cardinality approximately while natural number concepts are precise. In this paper, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Where the Sidewalk Ends: The Limits of Social Constructionism.David Peterson - 2012 - Journal for the Theory of Social Behaviour 42 (4):465-484.
    The sociology of knowledge is a heterogeneous set of theories which generally focuses on the social origins of meaning. Strong arguments, epitomized by Durkheim's late work, have hypothesized that the very concepts our minds use to structure experience are constructed through social processes. This view has come under attack from theorists influenced by recent work in developmental psychology that has demonstrated some awareness of these categories in pre-socialized infants. However, further studies have shown that the innate abilities infants display differ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Contrast and entailment: Abstract logical relations constrain how 2- and 3-year-old children interpret unknown numbers.Roman Feiman, Joshua K. Hartshorne & David Barner - 2019 - Cognition 183 (C):192-207.
    Do children understand how different numbers are related before they associate them with specific cardinalities? We explored how children rely on two abstract relations – contrast and entailment – to reason about the meanings of ‘unknown’ number words. Previous studies argue that, because children give variable amounts when asked to give an unknown number, all unknown numbers begin with an existential meaning akin to some. In Experiment 1, we tested an alternative hypothesis, that because numbers belong to a scale of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Do analog number representations underlie the meanings of young children’s verbal numerals?Susan Carey, Anna Shusterman, Paul Haward & Rebecca Distefano - 2017 - Cognition 168 (C):243-255.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Acquiring mathematical concepts: The viability of hypothesis testing.Stefan Buijsman - 2021 - Mind and Language 36 (1):48-61.
    Can concepts be acquired by testing hypotheses about these concepts? Fodor famously argued that this is not possible. Testing the correct hypothesis would require already possessing the concept. I argue that this does not generally hold for mathematical concepts. I discuss specific, empirically motivated, hypotheses for number concepts that can be tested without needing to possess the relevant number concepts. I also argue that one can test hypotheses about the identity conditions of other mathematical concepts, and then fix the application (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Numerical ordering ability mediates the relation between number-sense and arithmetic competence.Ian M. Lyons & Sian L. Beilock - 2011 - Cognition 121 (2):256-261.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Seven does not mean natural number, and children know more than you think.Barbara W. Sarnecka - 2008 - Behavioral and Brain Sciences 31 (6):668-669.
    Rips et al.'s critique is misplaced when it faults the induction model for not explaining the acquisition of meta-numerical knowledge: This is something the model was never meant to explain. More importantly, the critique underestimates what children know, and what they have achieved, when they learn the cardinal meanings of the number words through.
    Download  
     
    Export citation  
     
    Bookmark   1 citation