Switch to: Citations

Add references

You must login to add references.
  1. Complexity of reals in inner models of set theory.Boban Velickovic & W. Hugh Woodin - 1998 - Annals of Pure and Applied Logic 92 (3):283-295.
    We consider the possible complexity of the set of reals belonging to an inner model M of set theory. We show that if this set is analytic then either 1M is countable or else all reals are in M. We also show that if an inner model contains a superperfect set of reals as a subset then it contains all reals. On the other hand, it is possible to have an inner model M whose reals are an uncountable Fσ set (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Trees and Π 1 1 -Subsets of ω1 ω 1.Alan Mekler & Jouko Vaananen - 1993 - Journal of Symbolic Logic 58 (3):1052 - 1070.
    We study descriptive set theory in the space ω1 ω 1 by letting trees with no uncountable branches play a similar role as countable ordinals in traditional descriptive set theory. By using such trees, we get, for example, a covering property for the class of Π 1 1 -sets of ω1 ω 1 . We call a family U of trees universal for a class V of trees if $\mathscr{U} \subseteq \mathscr{V}$ and every tree in V can be order-preservingly mapped (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Ramsey-like cardinals.Victoria Gitman - 2011 - Journal of Symbolic Logic 76 (2):519 - 540.
    One of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The bounded proper forcing axiom.Martin Goldstern & Saharon Shelah - 1995 - Journal of Symbolic Logic 60 (1):58-73.
    The bounded proper forcing axiom BPFA is the statement that for any family of ℵ 1 many maximal antichains of a proper forcing notion, each of size ℵ 1 , there is a directed set meeting all these antichains. A regular cardinal κ is called Σ 1 -reflecting, if for any regular cardinal χ, for all formulas $\varphi, "H(\chi) \models`\varphi'"$ implies " $\exists\delta . We investigate several algebraic consequences of BPFA, and we show that the consistency strength of the bounded (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   334 citations  
  • -Definability at uncountable regular cardinals.Philipp Lücke - 2012 - Journal of Symbolic Logic 77 (3):1011-1046.
    Let k be an infinite cardinal. A subset of $(^k k)^n $ is a $\Sigma _1^1 $ -subset if it is the projection p[T] of all cofinal branches through a subtree T of $(lt;kk)^{n + 1} $ of height k. We define $\Sigma _k^1 - ,\Pi _k^1 $ - and $\Delta _k^1$ subsets of $(^k k)^n $ as usual. Given an uncountable regular cardinal k with k = k (...))
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Complexity of reals in inner models of set theory.Boban Velickovic & Hugh Woodin - 1998 - Annals of Pure and Applied Logic 92 (3):283-295.
    We consider the possible complexity of the set of reals belonging to an inner model M of set theory. We show that if this set is analytic then either 1M is countable or else all reals are in M. We also show that if an inner model contains a superperfect set of reals as a subset then it contains all reals. On the other hand, it is possible to have an inner model M whose reals are an uncountable Fσ set (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Precipitous ideals.T. Jech, M. Magidor, W. Mitchell & K. Prikry - 1980 - Journal of Symbolic Logic 45 (1):1-8.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Inner models with many Woodin cardinals.J. R. Steel - 1993 - Annals of Pure and Applied Logic 65 (2):185-209.
    We extend the theory of “Fine structure and iteration trees” to models having more than one Woodin cardinal.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Greatly Erdős cardinals with some generalizations to the Chang and Ramsey properties.I. Sharpe & P. D. Welch - 2011 - Annals of Pure and Applied Logic 162 (11):863-902.
    • We define a notion of order of indiscernibility type of a structure by analogy with Mitchell order on measures; we use this to define a hierarchy of strong axioms of infinity defined through normal filters, the α-weakly Erdős hierarchy. The filters in this hierarchy can be seen to be generated by sets of ordinals where these indiscernibility orders on structures dominate the canonical functions.• The limit axiom of this is that of greatly Erdős and we use it to calibrate (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Thin equivalence relations and inner models.Philipp Schlicht - 2014 - Annals of Pure and Applied Logic 165 (10):1577-1625.
    We describe the inner models with representatives in all equivalence classes of thin equivalence relations in a given projective pointclass of even level assuming projective determinacy. The main result shows that these models are characterized by their correctness and the property that they correctly compute the tree from the appropriate scale. The main step towards this characterization shows that the tree from a scale can be reconstructed in a generic extension of an iterate of a mouse. We then construct models (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Semi-proper forcing, remarkable cardinals, and Bounded Martin's Maximum.Ralf Schindler - 2004 - Mathematical Logic Quarterly 50 (6):527-532.
    We show that L absoluteness for semi-proper forcings is equiconsistent with the existence of a remarkable cardinal, and hence by [6] with L absoluteness for proper forcings. By [7], L absoluteness for stationary set preserving forcings gives an inner model with a strong cardinal. By [3], the Bounded Semi-Proper Forcing Axiom is equiconsistent with the Bounded Proper Forcing Axiom , which in turn is equiconsistent with a reflecting cardinal. We show that Bounded Martin's Maximum is much stronger than BSPFA in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Optimal proofs of determinacy.Itay Neeman - 1995 - Bulletin of Symbolic Logic 1 (3):327-339.
    In this paper I shall present a method for proving determinacy from large cardinals which, in many cases, seems to yield optimal results. One of the main applications extends theorems of Martin, Steel and Woodin about determinacy within the projective hierarchy. The method can also be used to give a new proof of Woodin's theorem about determinacy in L.The reason we look for optimal determinacy proofs is not only vanity. Such proofs serve to tighten the connection between large cardinals and (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)Trees and -subsets of ω1ω1.Alan Mekler & Jouko Väänänen - 1993 - Journal of Symbolic Logic 58 (3):1052-1070.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • $K$ without the measurable.Ronald Jensen & John Steel - 2013 - Journal of Symbolic Logic 78 (3):708-734.
    We show in ZFC that if there is no proper class inner model with a Woodin cardinal, then there is an absolutely definablecore modelthat is close toVin various ways.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Ramsey-like cardinals II.Victoria Gitman & P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):541-560.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Woodin's axiom , bounded forcing axioms, and precipitous ideals on ω 1.Benjamin Claverie & Ralf Schindler - 2012 - Journal of Symbolic Logic 77 (2):475-498.
    If the Bounded Proper Forcing Axiom BPFA holds, then Mouse Reflection holds at N₂ with respect to all mouse operators up to the level of Woodin cardinals in the next ZFC-model. This yields that if Woodin's ℙ max axiom (*) holds, then BPFA implies that V is closed under the "Woodin-in-the-next-ZFC-model" operator. We also discuss stronger Mouse Reflection principles which we show to follow from strengthenings of BPFA, and we discuss the theory BPFA plus "NS ω1 is precipitous" and strengthenings (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   212 citations