Switch to: Citations

Add references

You must login to add references.
  1. Relations among fields: Mendelian, cytological and molecular mechanisms.Lindley Darden - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):349-371.
    Philosophers have proposed various kinds of relations between Mendelian genetics and molecular biology: reduction, replacement, explanatory extension. This paper argues that the two fields are best characterized as investigating different, serially integrated, hereditary mechanisms. The mechanisms operate at different times and contain different working entities. The working entities of the mechanisms of Mendelian heredity are chromosomes, whose movements serve to segregate alleles and independently assort genes in different linkage groups. The working entities of numerous mechanisms of molecular biology are larger (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Interfield theories.Lindley Darden & Nancy Maull - 1977 - Philosophy of Science 44 (1):43-64.
    This paper analyzes the generation and function of hitherto ignored or misrepresented interfield theories , theories which bridge two fields of science. Interfield theories are likely to be generated when two fields share an interest in explaining different aspects of the same phenomenon and when background knowledge already exists relating the two fields. The interfield theory functions to provide a solution to a characteristic type of theoretical problem: how are the relations between fields to be explained? In solving this problem (...)
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • Beyond reduction: mechanisms, multifield integration and the unity of neuroscience.Carl F. Craver - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):373-395.
    Philosophers of neuroscience have traditionally described interfield integration using reduction models. Such models describe formal inferential relations between theories at different levels. I argue against reduction and for a mechanistic model of interfield integration. According to the mechanistic model, different fields integrate their research by adding constraints on a multilevel description of a mechanism. Mechanistic integration may occur at a given level or in the effort to build a theory that oscillates among several levels. I develop this alternative model using (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Scientific perspectivism: A philosopher of science's response to the challenge of big data biology.Werner Callebaut - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):69-80.
    Big data biology—bioinformatics, computational biology, systems biology (including ‘omics’), and synthetic biology—raises a number of issues for the philosophy of science. This article deals with several such: Is data-intensive biology a new kind of science, presumably post-reductionistic? To what extent is big data biology data-driven? Can data ‘speak for themselves?’ I discuss these issues by way of a reflection on Carl Woese’s worry that “a society that permits biology to become an engineering discipline, that allows that science to slip into (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Systems biology and the integration of mechanistic explanation and mathematical explanation.Ingo Brigandt - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):477-492.
    The paper discusses how systems biology is working toward complex accounts that integrate explanation in terms of mechanisms and explanation by mathematical models—which some philosophers have viewed as rival models of explanation. Systems biology is an integrative approach, and it strongly relies on mathematical modeling. Philosophical accounts of mechanisms capture integrative in the sense of multilevel and multifield explanations, yet accounts of mechanistic explanation have failed to address how a mathematical model could contribute to such explanations. I discuss how mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Explanation in Biology: Reduction, Pluralism, and Explanatory Aims.Ingo Brigandt - 2011 - Science & Education 22 (1):69-91.
    This essay analyzes and develops recent views about explanation in biology. Philosophers of biology have parted with the received deductive-nomological model of scientific explanation primarily by attempting to capture actual biological theorizing and practice. This includes an endorsement of different kinds of explanation (e.g., mathematical and causal-mechanistic), a joint study of discovery and explanation, and an abandonment of models of theory reduction in favor of accounts of explanatory reduction. Of particular current interest are philosophical accounts of complex explanations that appeal (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology.Ingo Brigandt - 2010 - Erkenntnis 73 (3):295-311.
    The paper works towards an account of explanatory integration in biology, using as a case study explanations of the evolutionary origin of novelties-a problem requiring the integration of several biological fields and approaches. In contrast to the idea that fields studying lower level phenomena are always more fundamental in explanations, I argue that the particular combination of disciplines and theoretical approaches needed to address a complex biological problem and which among them is explanatorily more fundamental varies with the problem pursued. (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Model systems in developmental biology.Jessica A. Bolker - 1995 - Bioessays 17 (5):451-455.
    The practical criteria by which developmental biologists choose their model systems have evolutionary correlates. The result is a sample that is not merely small, but biased in particular ways, for example towards species with rapid, highly canalized development. These biases influence both data collection and interpretation, and our views of how development works and which aspects of it are important.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • From molecules to behavior and the clinic: Integration in chronobiology.William Bechtel - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):493-502.
    Chronobiology, especially the study of circadian rhythms, provides a model scientific field in which philosophers can study how investigators from a variety of disciplines working at different levels of organization are each contributing to a multi-level account of the responsible mechanism. I focus on how the framework of mechanistic explanation integrates research designed to decompose the mechanism with efforts directed at recomposition that relies especially on computation models. I also examine how recently the integration has extended beyond basic research to (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • What’s so special about model organisms?Rachel A. Ankeny & Sabina Leonelli - 2011 - Studies in History and Philosophy of Science Part A 42 (2):313-323.
    This paper aims to identify the key characteristics of model organisms that make them a specific type of model within the contemporary life sciences: in particular, we argue that the term “model organism” does not apply to all organisms used for the purposes of experimental research. We explore the differences between experimental and model organisms in terms of their material and epistemic features, and argue that it is essential to distinguish between their representational scope and representational target. We also examine (...)
    Download  
     
    Export citation  
     
    Bookmark   113 citations  
  • Infra-experimentality: from traces to data, from data to patterning facts.Hans-Jörg Rheinberger - 2011 - History of Science 49 (3):337-348.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The Experimenter's Museum: GenBank, Natural History, and the Moral Economies of Biomedicine.Bruno J. Strasser - 2011 - Isis 102 (1):60-96.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Collection and collation: theory and practice of Linnaean botany.Staffan Müller-Wille - 2007 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 38 (3):541-562.
    Historians and philosophers of science have interpreted the taxonomic theory of Carl Linnaeus as an ‘essentialist’, ‘Aristotelian’, or even ‘scholastic’ one. This interpretation is flatly contradicted by what Linnaeus himself had to say about taxonomy in Systema naturae , Fundamenta botanica and Genera plantarum . This paper straightens out some of the more basic misinterpretations by showing that: Linnaeus’s species concept took account of reproductive relations among organisms and was therefore not metaphysical, but biological; Linnaeus did not favour classification by (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Cancer and the Goals of Integration.Anya Plutynski - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences (4):466-476.
    Cancer is not one, but many diseases, and each is a product of a variety of causes acting (and interacting) at distinct temporal and spatial scales, or “levels” in the biological hierarchy. In part because of this diversity of cancer types and causes, there has been a diversity of models, hypotheses, and explanations of carcinogenesis. However, there is one model of carcinogenesis that seems to have survived the diversification of cancer types: the multi-stage model of carcinogenesis. This paper examines the (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The roles of integration in molecular systems biology.Maureen A. O’Malley & Orkun S. Soyer - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):58-68.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • When integration fails: Prokaryote phylogeny and the tree of life.Maureen A. O’Malley - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4a):551-562.
    Much is being written these days about integration, its desirability and even its necessity when complex research problems are to be addressed. Seldom, however, do we hear much about the failure of such efforts. Because integration is an ongoing activity rather than a final achievement, and because today’s literature about integration consists mostly of manifesto statements rather than precise descriptions, an examination of unsuccessful integration could be illuminating to understand better how it works. This paper will examine the case of (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Re-thinking organisms: The impact of databases on model organism biology.Sabina Leonelli & Rachel A. Ankeny - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):29-36.
    Community databases have become crucial to the collection, ordering and retrieval of data gathered on model organisms, as well as to the ways in which these data are interpreted and used across a range of research contexts. This paper analyses the impact of community databases on research practices in model organism biology by focusing on the history and current use of four community databases: FlyBase, Mouse Genome Informatics, WormBase and The Arabidopsis Information Resource. We discuss the standards used by the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • On the locality of data and claims about phenomena.Sabina Leonelli - 2009 - Philosophy of Science 76 (5):737-749.
    Bogen and Woodward characterized data as embedded in the context in which they are produced (‘local’) and claims about phenomena as retaining their significance beyond that context (‘nonlocal’). This view does not fit sciences such as biology, which successfully disseminate data via packaging processes that include appropriate labels, vehicles, and human interventions. These processes enhance the evidential scope of data and ensure that claims about phenomena are understood in the same way across research communities. I conclude that the degree of (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Classificatory Theory in Data-intensive Science: The Case of Open Biomedical Ontologies.Sabina Leonelli - 2012 - International Studies in the Philosophy of Science 26 (1):47 - 65.
    Knowledge-making practices in biology are being strongly affected by the availability of data on an unprecedented scale, the insistence on systemic approaches and growing reliance on bioinformatics and digital infrastructures. What role does theory play within data-intensive science, and what does that tell us about scientific theories in general? To answer these questions, I focus on Open Biomedical Ontologies, digital classification tools that have become crucial to sharing results across research contexts in the biological and biomedical sciences, and argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Too many numbers: Microarrays in clinical cancer research.Peter Keating & Alberto Cambrosio - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):37-51.
    In his highly regarded history of the rise of clinical trials in America, HarryMarks describes how their widespread adoption resulted largely fromthe efforts of ‘therapeutic reformers’ who sought to replace the individualexpertise of clinicians with the ‘science of controlled experiment’. Thetransition described by Marks resembles in many respects the transition fromthe ‘truth-to-nature’ objectivity of individual experts to a ‘mechanical’ formof objectivity portrayed by Daston and Galison. In particular,Marks details the passage from a regime of trust in expertise and experts to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Intervention, integration and translation in obesity research: Genetic, developmental and metaorganismal approaches.Maureen O'Malley & Karola Stotz - 2011 - Philosophy, Ethics, and Humanities in Medicine 6:2.
    Obesity is the focus of multiple lines of inquiry that have -- together and separately -- produced many deep insights into the physiology of weight gain and maintenance. We examine three such streams of research and show how they are oriented to obesity intervention through multilevel integrated approaches. The first research programme is concerned with the genetics and biochemistry of fat production, and it links metabolism, physiology, endocrinology and neurochemistry. The second account of obesity is developmental and draws together epigenetic (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Theoretical Integration, Cooperation, and Theories as Tracking Devices.James Griesemer - 2006 - Biological Theory 1 (1):4-7.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Making Philosophy of Science More Socially Relevant Vol. 177.Kathryn S. Plaisance & Carla Fehr (eds.) - 2010 - Springer.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Documenting the emergence of bio-ontologies: or, why researching bioinformatics requires HPSSB.Sabina Leonelli - 2010 - History and Philosophy of the Life Sciences 32 (1).
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project.Chris F. Taylor, Dawn Field, Susanna-Assunta Sansone, Jan Aerts, Rolf Apweiler, Michael Ashburner, Catherine A. Ball, Pierre-Alain Binz, Molly Bogue, Tim Booth, Alvis Brazma, Ryan R. Brinkman, Adam Michael Clark, Eric W. Deutsch, Oliver Fiehn, Jennifer Fostel, Peter Ghazal, Frank Gibson, Tanya Gray, Graeme Grimes, John M. Hancock, Nigel W. Hardy, Henning Hermjakob, Randall K. Julian, Matthew Kane, Carsten Kettner, Christopher Kinsinger, Eugene Kolker, Martin Kuiper, Nicolas Le Novere, Jim Leebens-Mack, Suzanna E. Lewis, Phillip Lord, Ann-Marie Mallon, Nishanth Marthandan, Hiroshi Masuya, Ruth McNally, Alexander Mehrle, Norman Morrison, Sandra Orchard, John Quackenbush, James M. Reecy, Donald G. Robertson, Philippe Rocca-Serra, Henry Rodriguez, Heiko Rosenfelder, Javier Santoyo-Lopez, Richard H. Scheuermann, Daniel Schober, Barry Smith & Jason Snape - 2008 - Nature Biotechnology 26 (8):889-896.
    Throughout the biological and biomedical sciences there is a growing need for, prescriptive ‘minimum information’ (MI) checklists specifying the key information to include when reporting experimental results are beginning to find favor with experimentalists, analysts, publishers and funders alike. Such checklists aim to ensure that methods, data, analyses and results are described to a level sufficient to support the unambiguous interpretation, sophisticated search, reanalysis and experimental corroboration and reuse of data sets, facilitating the extraction of maximum value from data sets (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Keeping up with Dobzhansky: G. Ledyard Stebbins, Jr., Plant Evolution, and the Evolutionary Synthesis.Vassiliki Betty Smocovitis - 2006 - History and Philosophy of the Life Sciences 28 (1):9 - 47.
    This paper explores the complex relationship between the plant evolutionist G. Ledyard Stebbins and the animal evolutionist Theodosius Dobzhansky. The manner in which the plant evolution was brought into line, synthesized, or rendered consistent with the understanding of animal evolution (and especially insect evolution) is explored, especially as it culminated with the publication of Stebbins's 1950 book Variation and Evolution in Plants. The paper explores the multi-directional traffic of influence between Stebbins and Dobzhansky, but also their social and professional networks (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The self-vindication of the laboratory sciences.Ian Hacking - 1992 - In Andrew Pickering (ed.), Science as Practice and Culture. University of Chicago Press. pp. 29--64.
    Download  
     
    Export citation  
     
    Bookmark   157 citations  
  • Exploratory Experimentation and the Role of Histochemical Techniques in the Work of Jean Brachet, 1938-1952.Richard M. Burian - 1997 - History and Philosophy of the Life Sciences 19 (1):27 - 45.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Growing Weed, Producing Knowledge An Epistemic History of Arabidopsis thaliana.Sabina Leonelli - 2007 - History and Philosophy of the Life Sciences 29 (2):193 - 223.
    Arabidopsis is currently the most popular and well-researched model organism in plant biology. This paper documents this plant's rise to scientific fame by focusing on two interrelated aspects of Arabidopsis research. One is the extent to which the material features of the plant have constrained research directions and enabled scientific achievements. The other is the crucial role played by the international community of Arabidopsis researchers in making it possible to grow, distribute and use plant specimen that embody these material features. (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations