Switch to: Citations

Add references

You must login to add references.
  1. The Number Sense: How the Mind Creates Mathematics.Stanislas Dehaene - 1999 - British Journal of Educational Studies 47 (2):201-203.
    Download  
     
    Export citation  
     
    Bookmark   245 citations  
  • Homotopy theoretic models of identity types.Steve Awodey & Michael A. Warren - unknown
    Quillen [17] introduced model categories as an abstract framework for homotopy theory which would apply to a wide range of mathematical settings. By all accounts this program has been a success and—as, e.g., the work of Voevodsky on the homotopy theory of schemes [15] or the work of Joyal [11, 12] and Lurie [13] on quasicategories seem to indicate—it will likely continue to facilitate mathematical advances. In this paper we present a novel connection between model categories and mathematical logic, inspired (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Category theory and the foundations of mathematics: Philosophical excavations.Jean-Pierre Marquis - 1995 - Synthese 103 (3):421 - 447.
    The aim of this paper is to clarify the role of category theory in the foundations of mathematics. There is a good deal of confusion surrounding this issue. A standard philosophical strategy in the face of a situation of this kind is to draw various distinctions and in this way show that the confusion rests on divergent conceptions of what the foundations of mathematics ought to be. This is the strategy adopted in the present paper. It is divided into 5 (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Road to Modern Logic—An Interpretation.José Ferreirós - 2001 - Bulletin of Symbolic Logic 7 (4):441-484.
    This paper aims to outline an analysis and interpretation of the process that led to First-Order Logic and its consolidation as a core system of modern logic. We begin with an historical overview of landmarks along the road to modern logic, and proceed to a philosophical discussion casting doubt on the possibility of a purely rational justification of the actual delimitation of First-Order-Logic. On this basis, we advance the thesis that a certain historical tradition was essential to the emergence of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Identity and Existence in Intuitionistic Logic.Dana Scott, M. P. Fourman, C. J. Mulvey & D. S. Scott - 1985 - Journal of Symbolic Logic 50 (2):548-549.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Geometry as a Universal mental Construction.Véronique Izard, Pierre Pica, Danièle Hinchey, Stanislas Dehane & Elizabeth Spelke - 2011 - In Stanislas Dehaene & Elizabeth Brannon (eds.), Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought. Oxford University Press.
    Geometry, etymologically the “science of measuring the Earth”, is a mathematical formalization of space. Just as formal concepts of number may be rooted in an evolutionary ancient system for perceiving numerical quantity, the fathers of geometry may have been inspired by their perception of space. Is the spatial content of formal Euclidean geometry universally present in the way humans perceive space, or is Euclidean geometry a mental construction, specific to those who have received appropriate instruction? The spatial content of the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A brief introduction to algebraic set theory.Steve Awodey - 2008 - Bulletin of Symbolic Logic 14 (3):281-298.
    This brief article is intended to introduce the reader to the field of algebraic set theory, in which models of set theory of a new and fascinating kind are determined algebraically. The method is quite robust, applying to various classical, intuitionistic, and constructive set theories. Under this scheme some familiar set theoretic properties are related to algebraic ones, while others result from logical constraints. Conventional elementary set theories are complete with respect to algebraic models, which arise in a variety of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Pluralism and the Foundations of Mathematics.Geoffrey Hellman - 2006 - In ¸ Itekellersetal:Sp. pp. 65--79.
    A plurality of approaches to foundational aspects of mathematics is a fact of life. Two loci of this are discussed here, the classicism/constructivism controversy over standards of proof, and the plurality of universes of discourse for mathematics arising in set theory and in category theory, whose problematic relationship is discussed. The first case illustrates the hypothesis that a sufficiently rich subject matter may require a multiplicity of approaches. The second case, while in some respects special to mathematics, raises issues of (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Type Theory and Homotopy.Steve Awodey - 2012 - In Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.), Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf. Dordrecht, Netherland: Springer. pp. 183-201.
    The purpose of this informal survey article is to introduce the reader to a new and surprising connection between Logic, Geometry, and Algebra which has recently come to light in the form of an interpretation of the constructive type theory of Per Martin-Löf into homotopy theory and higher-dimensional category theory.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Relating first-order set theories and elementary toposes.Steve Awodey, Carsten Butz & Alex Simpson - 2007 - Bulletin of Symbolic Logic 13 (3):340-358.
    We show how to interpret the language of first-order set theory in an elementary topos endowed with, as extra structure, a directed structural system of inclusions (dssi). As our main result, we obtain a complete axiomatization of the intuitionistic set theory validated by all such interpretations. Since every elementary topos is equivalent to one carrying a dssi, we thus obtain a first-order set theory whose associated categories of sets are exactly the elementary toposes. In addition, we show that the full (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Reference, Kinds and Predicates.Marie La Palme Reyes, John Macnamara & Gonzalo E. Reyes - 1994 - In John Macnamara & Gonzalo E. Reyes (eds.), The Logical Foundations of Cognition. Oxford University Press USA. pp. 91-143.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Sheaves and Logic.M. P. Fourman, D. S. Scott & C. J. Mulvey - 1983 - Journal of Symbolic Logic 48 (4):1201-1203.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Relating First-Order Set Theories and Elementary Toposes.Steve Awodey & Thomas Streicher - 2007 - Bulletin of Symbolic Logic 13 (3):340-358.
    We show how to interpret the language of first-order set theory in an elementary topos endowed with, as extra structure, a directed structural system of inclusions . As our main result, we obtain a complete axiomatization of the intuitionistic set theory validated by all such interpretations. Since every elementary topos is equivalent to one carrying a dssi, we thus obtain a first-order set theory whose associated categories of sets are exactly the elementary toposes. In addition, we show that the full (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • La logique Des topos.André Boileau & André Joyal - 1981 - Journal of Symbolic Logic 46 (1):6-16.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Objects, sets, and ensembles.Lisa Feigenson - 2011 - In Stanislas Dehaene & Elizabeth Brannon (eds.), Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought. Oxford University Press. pp. 13--22.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Categorical Foundations and Foundations of Category Theory.Solomon Feferman - 1980 - In R. E. Butts & J. Hintikka (eds.), Logic, Foundations of Mathematics, and Computability Theory. Springer. pp. 149-169.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • (1 other version)Categories in Context: Historical, Foundational, and Philosophical &dagger.Elaine Landry & Jean-Pierre Marquis - 2005 - Philosophia Mathematica 13 (1):1-43.
    The aim of this paper is to put into context the historical, foundational and philosophical significance of category theory. We use our historical investigation to inform the various category-theoretic foundational debates and to point to some common elements found among those who advocate adopting a foundational stance. We then use these elements to argue for the philosophical position that category theory provides a framework for an algebraic _in re_ interpretation of mathematical structuralism. In each context, what we aim to show (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Foundational Issues in the Learning of Proper Names, Count Nouns and Mass Nouns.John Macnamara & Gonzalo E. Reyes - 1994 - In John Macnamara & Gonzalo E. Reyes (eds.), The Logical Foundations of Cognition. Oxford University Press USA. pp. 144-176.
    Download  
     
    Export citation  
     
    Bookmark   4 citations