References in:
Bayesian Decision Theory and Stochastic Independence
Philosophy of Science 87 (1):152178 (2020)
Add references
You must login to add references.




One of the fundamental problems of epistemology is to say when the evidence in an agent’s possession justifies the beliefs she holds. In this paper and its prequel, we defend the Bayesian solution to this problem by appealing to the following fundamental norm: Accuracy An epistemic agent ought to minimize the inaccuracy of her partial beliefs. In the prequel, we made this norm mathematically precise; in this paper, we derive its consequences. We show that the two core tenets of Bayesianism (...) 

One of the fundamental problems of epistemology is to say when the evidence in an agent’s possession justifies the beliefs she holds. In this paper and its sequel, we defend the Bayesian solution to this problem by appealing to the following fundamental norm: Accuracy An epistemic agent ought to minimize the inaccuracy of her partial beliefs. In this paper, we make this norm mathematically precise in various ways. We describe three epistemic dilemmas that an agent might face if she attempts (...) 

This book defends the view that any adequate account of rational decision making must take a decision maker's beliefs about causal relations into account. The early chapters of the book introduce the nonspecialist to the rudiments of expected utility theory. The major technical advance offered by the book is a 'representation theorem' that shows that both causal decision theory and its main rival, Richard Jeffrey's logic of decision, are both instances of a more general conditional decision theory. The book solves (...) 

The pragmatic character of the Dutch book argument makes it unsuitable as an "epistemic" justification for the fundamental probabilist dogma that rational partial beliefs must conform to the axioms of probability. To secure an appropriately epistemic justification for this conclusion, one must explain what it means for a system of partial beliefs to accurately represent the state of the world, and then show that partial beliefs that violate the laws of probability are invariably less accurate than they could be otherwise. (...) 

According to orthodox (Kolmogorovian) probability theory, conditional probabilities are by definition certain ratios of unconditional probabilities. As a result, orthodox conditional probabilities are undefined whenever their antecedents have zero unconditional probability. This has important ramifications for the notion of probabilistic independence. Traditionally, independence is defined in terms of unconditional probabilities (the factorization of the relevant joint unconditional probabilities). Various “equivalent” formulations of independence can be given using conditional probabilities. But these “equivalences” break down if conditional probabilities are permitted to have (...) 



When making decisions, people naturally face uncertainty about the potential consequences of their actions due in part to limits in their capacity to represent, evaluate or deliberate. Nonetheless, they aim to make the best decisions possible. In Decision Theory with a Human Face, Richard Bradley develops new theories of agency and rational decisionmaking, offering guidance on how 'real' agents who are aware of their bounds should represent the uncertainty they face, how they should revise their opinions as a result of (...) 



The Twentieth Century has seen a dramatic rise in the use of probability and statistics in almost all fields of research. This has stimulated many new philosophical ideas on probability. _Philosophical Theories of Probability_ is the first book to present a clear, comprehensive and systematic account of these various theories and to explain how they relate to one another. Gillies also offers a distinctive version of the propensity theory of probability, and the intersubjective interpretation, which develops the subjective theory. 

We investigate the conflict between the ex ante and ex post criteria of social welfare in a new framework of individual and social decisions, which distinguishes between two sources of uncertainty, here interpreted as an objective and a subjective source respectively. This framework makes it possible to endow the individuals and society not only with ex ante and ex post preferences, as is usually done, but also with interim preferences of two kinds, and correspondingly, to introduce interim forms of the (...) 

We introduce a ranking of multidimensional alternatives, including uncertain prospects as a particular case, when these objects can be given a matrix form. This ranking is separable in terms of rows and columns, and continuous and monotonic in the basic quantities. Owing to the theory of additive separability developed here, we derive very precise numerical representations over a large class of domains (i.e., typically notof the Cartesian product form). We apply these representationsto (1)streams of commodity baskets through time, (2)uncertain social (...) 



