Switch to: Citations

Add references

You must login to add references.
  1. Strong axioms of infinity and elementary embeddings.Robert M. Solovay - 1978 - Annals of Mathematical Logic 13 (1):73.
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • Destruction or preservation as you like it.Joel David Hamkins - 1998 - Annals of Pure and Applied Logic 91 (2-3):191-229.
    The Gap Forcing Theorem, a key contribution of this paper, implies essentially that after any reverse Easton iteration of closed forcing, such as the Laver preparation, every supercompactness measure on a supercompact cardinal extends a measure from the ground model. Thus, such forcing can create no new supercompact cardinals, and, if the GCH holds, neither can it increase the degree of supercompactness of any cardinal; in particular, it can create no new measurable cardinals. In a crescendo of what I call (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • An equiconsistency for universal indestructibility.Arthur W. Apter & Grigor Sargsyan - 2010 - Journal of Symbolic Logic 75 (1):314-322.
    We obtain an equiconsistency for a weak form of universal indestructibility for strongness. The equiconsistency is relative to a cardinal weaker in consistency strength than a Woodin cardinal. Stewart Baldwin's notion of hyperstrong cardinal. We also briefly indicate how our methods are applicable to universal indestructibility for supercompactness and strong compactness.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Tall cardinals.Joel D. Hamkins - 2009 - Mathematical Logic Quarterly 55 (1):68-86.
    A cardinal κ is tall if for every ordinal θ there is an embedding j: V → M with critical point κ such that j > θ and Mκ ⊆ M. Every strong cardinal is tall and every strongly compact cardinal is tall, but measurable cardinals are not necessarily tall. It is relatively consistent, however, that the least measurable cardinal is tall. Nevertheless, the existence of a tall cardinal is equiconsistent with the existence of a strong cardinal. Any tall cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Witnessing numbers of Shelah Cardinals.Toshio Suzuki - 1993 - Mathematical Logic Quarterly 39 (1):62-66.
    We consider minimal ranks of extenders associated with Shelah cardinals by introducing witnessing numbers. Using these numbers we shall investigate effects of Shelah cardinals above themselves. MSC: 03E55.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Superdestructibility: A Dual to Laver's Indestructibility.Joel David Hamkins & Saharon Shelah - 1998 - Journal of Symbolic Logic 63 (2):549-554.
    After small forcing, any $ -closed forcing will destroy the supercompactness and even the strong compactness of κ.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Many-times huge and superhuge cardinals.Julius B. Barbanel, Carlos A. Diprisco & It Beng Tan - 1984 - Journal of Symbolic Logic 49 (1):112-122.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • C(n)-cardinals.Joan Bagaria - 2012 - Archive for Mathematical Logic 51 (3-4):213-240.
    For each natural number n, let C(n) be the closed and unbounded proper class of ordinals α such that Vα is a Σn elementary substructure of V. We say that κ is a C(n)-cardinal if it is the critical point of an elementary embedding j : V → M, M transitive, with j(κ) in C(n). By analyzing the notion of C(n)-cardinal at various levels of the usual hierarchy of large cardinal principles we show that, starting at the level of superstrong (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Reducing the consistency strength of an indestructibility theorem.Arthur W. Apter - 2008 - Mathematical Logic Quarterly 54 (3):288-293.
    Using an idea of Sargsyan, we show how to reduce the consistency strength of the assumptions employed to establish a theorem concerning a uniform level of indestructibility for both strong and supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reducing the consistency strength of an indestructibility theorem.Arthur Agler - 2008 - Mathematical Logic Quarterly 54 (3):288-293.
    Using an idea of Sargsyan, we show how to reduce the consistency strength of the assumptions employed to establish a theorem concerning a uniform level of indestructibility for both strong and supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Canonical seeds and Prikry trees.Joel Hamkins - 1997 - Journal of Symbolic Logic 62 (2):373-396.
    Applying the seed concept to Prikry tree forcing P μ , I investigate how well P μ preserves the maximality property of ordinary Prikry forcing and prove that P μ Prikry sequences are maximal exactly when μ admits no non-canonical seeds via a finite iteration. In particular, I conclude that if μ is a strongly normal supercompactness measure, then P μ Prikry sequences are maximal, thereby proving, for a large class of measures, a conjecture of W. Hugh Woodin's.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Combined Maximality Principles up to large cardinals.Gunter Fuchs - 2009 - Journal of Symbolic Logic 74 (3):1015-1046.
    The motivation for this paper is the following: In [4] I showed that it is inconsistent with ZFC that the Maximality Principle for directed closed forcings holds at unboundedly many regular cardinals κ (even only allowing κ itself as a parameter in the Maximality Principle for < κ -closed forcings each time). So the question is whether it is consistent to have this principle at unboundedly many regular cardinals or at every regular cardinal below some large cardinal κ (instead of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations