Switch to: Citations

Add references

You must login to add references.
  1. The formal sciences discover the philosophers' stone.James Franklin - 1994 - Studies in History and Philosophy of Science Part A 25 (4):513-533.
    The formal sciences - mathematical as opposed to natural sciences, such as operations research, statistics, theoretical computer science, systems engineering - appear to have achieved mathematically provable knowledge directly about the real world. It is argued that this appearance is correct.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Why philosophers should care about computational complexity.Scott Aaronson - 2013 - Computability: Turing, Gödel, Church, and Beyond:261--328.
    One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory---the field that studies the resources needed to solve computational problems---leads to new perspectives on the nature of mathematical knowledge, the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction and Goodman's (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • What Makes a Scientific Explanation Distinctively Mathematical?Marc Lange - 2013 - British Journal for the Philosophy of Science 64 (3):485-511.
    Certain scientific explanations of physical facts have recently been characterized as distinctively mathematical –that is, as mathematical in a different way from ordinary explanations that employ mathematics. This article identifies what it is that makes some scientific explanations distinctively mathematical and how such explanations work. These explanations are non-causal, but this does not mean that they fail to cite the explanandum’s causes, that they abstract away from detailed causal histories, or that they cite no natural laws. Rather, in these explanations, (...)
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • Mathematical Explanations Of Empirical Facts, And Mathematical Realism.Aidan Lyon - 2012 - Australasian Journal of Philosophy 90 (3):559-578.
    A main thread of the debate over mathematical realism has come down to whether mathematics does explanatory work of its own in some of our best scientific explanations of empirical facts. Realists argue that it does; anti-realists argue that it doesn't. Part of this debate depends on how mathematics might be able to do explanatory work in an explanation. Everyone agrees that it's not enough that there merely be some mathematics in the explanation. Anti-realists claim there is nothing mathematics can (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • (1 other version)Scientific Explanation: Three Basic Conceptions.Wesley C. Salmon - 1984 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1984:293 - 305.
    By contrasting three general conceptions of scientific explanation, this paper seeks to clarify the explanandum and to exhibit the fundamental philosophical issues involved in the project of explicating scientific explanation. The three conceptions--epistemic, modal, and ontic--have both historical and contemporary importance. In the context of Laplacian determinism, they do not seem importantly distinct, but in the context of irreducibly statistical explanations, the three are seen to diverge sharply. The paper argues for a causal/mechanical version of the ontic conception, and concludes (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • (1 other version)Why Do We Prove Theorems?Yehuda Rav - 1999 - Philosophia Mathematica 7 (1):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • (1 other version)Why Do We Prove Theorems?Yehuda Rav - 1998 - Philosophia Mathematica 6 (3):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • The Princeton Companion to Mathematics.Timothy Gowers, June Barrow-Green & Imre Leader - 2009 - Bulletin of Symbolic Logic 15 (4):431-436.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Science-Driven Mathematical Explanation.Alan Baker - 2012 - Mind 121 (482):243-267.
    Philosophers of mathematics have become increasingly interested in the explanatory role of mathematics in empirical science, in the context of new versions of the Quinean ‘Indispensability Argument’ which employ inference to the best explanation for the existence of abstract mathematical objects. However, little attention has been paid to analysing the nature of the explanatory relation involved in these mathematical explanations in science (MES). In this paper, I attack the only articulated account of MES in the literature (an account sketched by (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • A Role for Mathematics in the Physical Sciences.Chris Pincock - 2007 - Noûs 41 (2):253-275.
    Conflicting accounts of the role of mathematics in our physical theories can be traced to two principles. Mathematics appears to be both (1) theoretically indispensable, as we have no acceptable non-mathematical versions of our theories, and (2) metaphysically dispensable, as mathematical entities, if they existed, would lack a relevant causal role in the physical world. I offer a new account of a role for mathematics in the physical sciences that emphasizes the epistemic benefits of having mathematics around when we do (...)
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • Abstract Explanations in Science.Christopher Pincock - 2014 - British Journal for the Philosophy of Science 66 (4):857-882.
    This article focuses on a case that expert practitioners count as an explanation: a mathematical account of Plateau’s laws for soap films. I argue that this example falls into a class of explanations that I call abstract explanations.explanations involve an appeal to a more abstract entity than the state of affairs being explained. I show that the abstract entity need not be causally relevant to the explanandum for its features to be explanatorily relevant. However, it remains unclear how to unify (...)
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • Learning from Euler. From Mathematical Practice to Mathematical Explanation.Daniele Molinini - 2012 - Philosophia Scientiae 16 (1):105-127.
    Dans son « Découverte d'un nouveau principe de mécanique » (1750) Euler a donné, pour la première fois, une preuve du théorème qu'on appelle aujourd'hui le Théorème d'Euler. Dans cet article je vais me concentrer sur la preuve originale d'Euler, et je vais montrer comment la pratique mathématique d Euler peut éclairer le débat philosophique sur la notion de preuves explicatives en mathématiques. En particulier, je montrerai comment l'un des modèles d'explication mathématique les plus connus, celui proposé par Mark Steiner (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Depth and Explanation in Mathematics.Marc Lange - 2015 - Philosophia Mathematica 23 (2):196-214.
    This paper argues that in at least some cases, one proof of a given theorem is deeper than another by virtue of supplying a deeper explanation of the theorem — that is, a deeper account of why the theorem holds. There are cases of scientific depth that also involve a common abstract structure explaining a similarity between two otherwise unrelated phenomena, making their similarity no coincidence and purchasing depth by answering why questions that separate, dissimilar explanations of the two phenomena (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Aspects of Mathematical Explanation: Symmetry, Unity, and Salience.Marc Lange - 2014 - Philosophical Review 123 (4):485-531.
    Unlike explanation in science, explanation in mathematics has received relatively scant attention from philosophers. Whereas there are canonical examples of scientific explanations, there are few examples that have become widely accepted as exhibiting the distinction between mathematical proofs that explain why some mathematical theorem holds and proofs that merely prove that the theorem holds without revealing the reason why it holds. This essay offers some examples of proofs that mathematicians have considered explanatory, and it argues that these examples suggest a (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Mathematics and Scientific Representation.Christopher Pincock - 2011 - Oxford and New York: Oxford University Press USA.
    Mathematics plays a central role in much of contemporary science, but philosophers have struggled to understand what this role is or how significant it might be for mathematics and science. In this book Christopher Pincock tackles this perennial question in a new way by asking how mathematics contributes to the success of our best scientific representations. In the first part of the book this question is posed and sharpened using a proposal for how we can determine the content of a (...)
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • Princeton Companion to Mathematics.T. Gowers (ed.) - 2008 - Princeton University Press.
    This text features nearly 200 entries which introduce basic mathematical tools and vocabulary, trace the development of modern mathematics, define essential ...
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • An introduction to the philosophy of mathematics.Mark Colyvan - 2012 - Cambridge: Cambridge University Press.
    This introduction to the philosophy of mathematics focuses on contemporary debates in an important and central area of philosophy. The reader is taken on a fascinating and entertaining journey through some intriguing mathematical and philosophical territory, including such topics as the realism/anti-realism debate in mathematics, mathematical explanation, the limits of mathematics, the significance of mathematical notation, inconsistent mathematics and the applications of mathematics. Each chapter has a number of discussion questions and recommended further reading from both the contemporary literature and (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations