Switch to: References

Citations of:

Science-Driven Mathematical Explanation

Mind 121 (482):243-267 (2012)

Add citations

You must login to add citations.
  1. The normative structure of mathematization in systematic biology.Beckett Sterner & Scott Lidgard - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 46 (1):44-54.
    We argue that the mathematization of science should be understood as a normative activity of advocating for a particular methodology with its own criteria for evaluating good research. As a case study, we examine the mathematization of taxonomic classification in systematic biology. We show how mathematization is a normative activity by contrasting its distinctive features in numerical taxonomy in the 1960s with an earlier reform advocated by Ernst Mayr starting in the 1940s. Both Mayr and the numerical taxonomists sought to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Application of the Honeycomb Conjecture to the Bee’s Honeycomb.Tim Räz - 2013 - Philosophia Mathematica 21 (3):351-360.
    In a recent paper, Aidan Lyon and Mark Colyvan have proposed an explanation of the structure of the bee's honeycomb based on the mathematical Honeycomb Conjecture. This explanation has instantly become one of the standard examples in the philosophical debate on mathematical explanations of physical phenomena. In this critical note, I argue that the explanation is not scientifically adequate. The reason for this is that the explanation fails to do justice to the essentially three-dimensional structure of the bee's honeycomb.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bipedal Gait Costs: a new case study of mathematical explanation in science.Alan Baker - 2021 - European Journal for Philosophy of Science 11 (3):1-22.
    In this paper I present a case study of mathematical explanation in science that is new to the philosophical literature, and that arises in the context of estimating the energetic costs of running in bipedal animals. I refer to this as the Bipedal Gait Costs explanation. I argue that it is important for examples of applied mathematics to be driven not just by philosophical and mathematical concerns but also by scientific concerns. After a detailed presentation of the BGC case study, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Narrow Ontic Counterfactual Account of Distinctively Mathematical Explanation.Mark Povich - 2021 - British Journal for the Philosophy of Science 72 (2):511-543.
    An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductive-mathematical account, because it is modelled on the deductive-nomological account, is unlikely to satisfy these desiderata. I provide a counterfactual account of DME, the Narrow (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Unification and mathematical explanation in science.Sam Baron - 2021 - Synthese 199 (3-4):7339-7363.
    Mathematics clearly plays an important role in scientific explanation. Debate continues, however, over the kind of role that mathematics plays. I argue that if pure mathematical explananda and physical explananda are unified under a common explanation within science, then we have good reason to believe that mathematics is explanatory in its own right. The argument motivates the search for a new kind of scientific case study, a case in which pure mathematical facts and physical facts are explanatorily unified. I argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding does not depend on (causal) explanation.Philippe Verreault-Julien - 2019 - European Journal for Philosophy of Science 9 (2):18.
    One can find in the literature two sets of views concerning the relationship between understanding and explanation: that one understands only if 1) one has knowledge of causes and 2) that knowledge is provided by an explanation. Taken together, these tenets characterize what I call the narrow knowledge account of understanding. While the first tenet has recently come under severe attack, the second has been more resistant to change. I argue that we have good reasons to reject it on the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Importance and Explanatory Relevance: The Case of Mathematical Explanations.Gabriel Târziu - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):393-412.
    A way to argue that something plays an explanatory role in science is by linking explanatory relevance with importance in the context of an explanation. The idea is deceptively simple: a part of an explanation is an explanatorily relevant part of that explanation if removing it affects the explanation either by destroying it or by diminishing its explanatory power, i.e. an important part is an explanatorily relevant part. This can be very useful in many ontological debates. My aim in this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can we have mathematical understanding of physical phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Two Criticisms against Mathematical Realism.Seungbae Park - 2017 - Diametros 52:96-106.
    Mathematical realism asserts that mathematical objects exist in the abstract world, and that a mathematical sentence is true or false, depending on whether the abstract world is as the mathematical sentence says it is. I raise two objections against mathematical realism. First, the abstract world is queer in that it allows for contradictory states of affairs. Second, mathematical realism does not have a theoretical resource to explain why a sentence about a tricle is true or false. A tricle is an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Metaphysics as fairness.Sam Baron - 2016 - Synthese 193 (7):2237-2259.
    What are the rules of the metaphysical game? And how are the rules, whatever they are, to be justified? Above all, the rules should be fair. They should be rules that we metaphysicians would all accept, and thus should be justifiable to all rational persons engaged in metaphysical inquiry. Borrowing from Rawls’s conception of justice as fairness, I develop a model for determining and justifying the rules of metaphysics as a going concern.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Should scientific realists be platonists?Jacob Busch & Joe Morrison - 2016 - Synthese 193 (2):435-449.
    Enhanced indispensability arguments claim that Scientific Realists are committed to the existence of mathematical entities due to their reliance on Inference to the best explanation. Our central question concerns this purported parity of reasoning: do people who defend the EIA make an appropriate use of the resources of Scientific Realism to achieve platonism? We argue that just because a variety of different inferential strategies can be employed by Scientific Realists does not mean that ontological conclusions concerning which things we should (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Why are Normal Distributions Normal?Aidan Lyon - 2014 - British Journal for the Philosophy of Science 65 (3):621-649.
    It is usually supposed that the central limit theorem explains why various quantities we find in nature are approximately normally distributed—people's heights, examination grades, snowflake sizes, and so on. This sort of explanation is found in many textbooks across the sciences, particularly in biology, economics, and sociology. Contrary to this received wisdom, I argue that in many cases we are not justified in claiming that the central limit theorem explains why a particular quantity is normally distributed, and that in some (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Optimisation and mathematical explanation: doing the Lévy Walk.Sam Baron - 2014 - Synthese 191 (3).
    The indispensability argument seeks to establish the existence of mathematical objects. The success of the indispensability argument turns on finding cases of genuine extra- mathematical explanation. In this paper, I identify a new case of extra- mathematical explanation, involving the search patterns of fully-aquatic marine predators. I go on to use this case to predict the prevalence of extra- mathematical explanation in science.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Mathematical Explanations Of Empirical Facts, And Mathematical Realism.Aidan Lyon - 2012 - Australasian Journal of Philosophy 90 (3):559-578.
    A main thread of the debate over mathematical realism has come down to whether mathematics does explanatory work of its own in some of our best scientific explanations of empirical facts. Realists argue that it does; anti-realists argue that it doesn't. Part of this debate depends on how mathematics might be able to do explanatory work in an explanation. Everyone agrees that it's not enough that there merely be some mathematics in the explanation. Anti-realists claim there is nothing mathematics can (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Indispensability arguments in the philosophy of mathematics.Mark Colyvan - 2008 - Stanford Encyclopedia of Philosophy.
    One of the most intriguing features of mathematics is its applicability to empirical science. Every branch of science draws upon large and often diverse portions of mathematics, from the use of Hilbert spaces in quantum mechanics to the use of differential geometry in general relativity. It's not just the physical sciences that avail themselves of the services of mathematics either. Biology, for instance, makes extensive use of difference equations and statistics. The roles mathematics plays in these theories is also varied. (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Stuck in between. Phenomenology’s Explanatory Dilemma and its Role in Experimental Practice.Mark-Oliver Casper & Philipp Haueis - 2023 - Phenomenology and the Cognitive Sciences 22 (3):575-598.
    Questions about phenomenology’s role in non-philosophical disciplines gained renewed attention. While we claim that phenomenology makes indispensable, unique contributions to different domains of scientific practice such as concept formation, experimental design, and data collection, we also contend that when it comes to explanation, phenomenological approaches face a dilemma. Either phenomenological attempts to explain conscious phenomena do not satisfy a central constraint on explanations, i.e. the asymmetry between explanans and explanandum, or they satisfy this explanatory asymmetry only by largely merging with (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Infinitesimal idealization, easy road nominalism, and fractional quantum statistics.Elay Shech - 2019 - Synthese 196 (5):1963-1990.
    It has been recently debated whether there exists a so-called “easy road” to nominalism. In this essay, I attempt to fill a lacuna in the debate by making a connection with the literature on infinite and infinitesimal idealization in science through an example from mathematical physics that has been largely ignored by philosophers. Specifically, by appealing to John Norton’s distinction between idealization and approximation, I argue that the phenomena of fractional quantum statistics bears negatively on Mary Leng’s proposed path to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Which Mathematical Objects are Referred to by the Enhanced Indispensability Argument?Vladimir Drekalović & Berislav Žarnić - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (1):121-126.
    This discussion note points to some verbal imprecisions in the formulation of the Enhanced Indispensability Argument. The examination of the plausibility of alternative interpretations reveals that the argument’s minor premise should be understood as a particular, not a universal, statement. Interpretations of the major premise and the conclusion oscillate between de re and de dicto readings. The attempt to find an appropriate interpretation for the EIA leads to undesirable results. If assumed to be valid and sound, the argument warrants the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Evidence, explanation and enhanced indispensability.Daniele Molinini - 2016 - Synthese 193 (2):403-422.
    In this paper I shall adopt a possible reading of the notions of ‘explanatory indispensability’ and ‘genuine mathematical explanation in science’ on which the Enhanced Indispensability Argument proposed by Alan Baker is based. Furthermore, I shall propose two examples of mathematical explanation in science and I shall show that, whether the EIA-partisans accept the reading I suggest, they are easily caught in a dilemma. To escape this dilemma they need to adopt some account of explanation and offer a plausible answer (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Against Mathematical Convenientism.Seungbae Park - 2016 - Axiomathes 26 (2):115-122.
    Indispensablists argue that when our belief system conflicts with our experiences, we can negate a mathematical belief but we do not because if we do, we would have to make an excessive revision of our belief system. Thus, we retain a mathematical belief not because we have good evidence for it but because it is convenient to do so. I call this view ‘ mathematical convenientism.’ I argue that mathematical convenientism commits the consequential fallacy and that it demolishes the Quine-Putnam (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Functional Approach to Ontology.Nathaniel Gan - 2021 - Metaphysica 22 (1):23-43.
    There are two ways of approaching an ontological debate: ontological realism recommends that metaphysicians seek to discover deep ontological facts of the matter, while ontological anti-realism denies that there are such facts; both views sometimes run into difficulties. This paper suggests an approach to ontology that begins with conceptual analysis and takes the results of that analysis as a guide for which metaontological view to hold. It is argued that in some cases, the functions for which we employ a part (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indispensability and the problem of compatible explanations: A reply to ‘Should scientific realists be platonists?’.Josh Hunt - 2016 - Synthese 193 (2):451-467.
    Alan Baker’s enhanced indispensability argument supports mathematical platonism through the explanatory role of mathematics in science. Busch and Morrison defend nominalism by denying that scientific realists use inference to the best explanation to directly establish ontological claims. In response to Busch and Morrison, I argue that nominalists can rebut the EIA while still accepting Baker’s form of IBE. Nominalists can plausibly require that defenders of the EIA establish the indispensability of a particular mathematical entity. Next, I argue that IBE cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How Not to Enhance the Indispensability Argument.Russell Marcus - 2014 - Philosophia Mathematica 22 (3):345-360.
    The new explanatory or enhanced indispensability argument alleges that our mathematical beliefs are justified by their indispensable appearances in scientific explanations. This argument differs from the standard indispensability argument which focuses on the uses of mathematics in scientific theories. I argue that the new argument depends for its plausibility on an equivocation between two senses of explanation. On one sense the new argument is an oblique restatement of the standard argument. On the other sense, it is vulnerable to an instrumentalist (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What Makes a Scientific Explanation Distinctively Mathematical?Marc Lange - 2013 - British Journal for the Philosophy of Science 64 (3):485-511.
    Certain scientific explanations of physical facts have recently been characterized as distinctively mathematical –that is, as mathematical in a different way from ordinary explanations that employ mathematics. This article identifies what it is that makes some scientific explanations distinctively mathematical and how such explanations work. These explanations are non-causal, but this does not mean that they fail to cite the explanandum’s causes, that they abstract away from detailed causal histories, or that they cite no natural laws. Rather, in these explanations, (...)
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • (1 other version)Euler’s Königsberg: the explanatory power of mathematics.Tim Räz - 2018 - European Journal for Philosophy of Science 8 (3):331-346.
    The present paper provides an analysis of Euler’s solutions to the Königsberg bridges problem. Euler proposes three different solutions to the problem, addressing their strengths and weaknesses along the way. I put the analysis of Euler’s paper to work in the philosophical discussion on mathematical explanations. I propose that the key ingredient to a good explanation is the degree to which it provides relevant information. Providing relevant information is based on knowledge of the structure in question, graphs in the present (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The silent hexagon: explaining comb structures.Tim Räz - 2017 - Synthese 194 (5).
    The paper presents, and discusses, four candidate explanations of the structure, and construction, of the bees’ honeycomb. So far, philosophers have used one of these four explanations, based on the mathematical Honeycomb Conjecture, while the other three candidate explanations have been ignored. I use the four cases to resolve a dispute between Pincock and Baker about the Honeycomb Conjecture explanation. Finally, I find that the two explanations focusing on the construction mechanism are more promising than those focusing exclusively on the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Abstract Explanations in Science.Christopher Pincock - 2014 - British Journal for the Philosophy of Science 66 (4):857-882.
    This article focuses on a case that expert practitioners count as an explanation: a mathematical account of Plateau’s laws for soap films. I argue that this example falls into a class of explanations that I call abstract explanations.explanations involve an appeal to a more abstract entity than the state of affairs being explained. I show that the abstract entity need not be causally relevant to the explanandum for its features to be explanatorily relevant. However, it remains unclear how to unify (...)
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • Mathematics and the world: explanation and representation.John-Hamish Heron - 2017 - Dissertation, King’s College London
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Explanation beyond Explanatory Proof.William D’Alessandro - 2017 - British Journal for the Philosophy of Science 71 (2):581-603.
    Much recent work on mathematical explanation has presupposed that the phenomenon involves explanatory proofs in an essential way. I argue that this view, ‘proof chauvinism’, is false. I then look in some detail at the explanation of the solvability of polynomial equations provided by Galois theory, which has often been thought to revolve around an explanatory proof. The article concludes with some general worries about the effects of chauvinism on the theory of mathematical explanation. 1Introduction 2Why I Am Not a (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The because of Because Without Cause†.Daniele Molinini - 2018 - Philosophia Mathematica 26 (2):275-286.
    Marc Lange. Because Without Cause: Non-Causal Explanations in Science and Mathematics. Oxford Studies in the Philosophy of Science. Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the Enhanced Indispensability Argument a Useful Tool in the Hands of Platonists?Vladimir Drekalović - 2019 - Philosophia 47 (4):1111-1126.
    Platonists in mathematics endeavour to prove the truthfulness of the proposal about the existence of mathematical objects. However, there have not been many explicit proofs of this proposal. One of the explicit ones is doubtlessly Baker’s Enhanced Indispensability Argument, formulated as a sort of modal syllogism. We aim at showing that the purpose of its creation – the defence of Platonist viewpoint – was not accomplished. Namely, the second premise of the Argument was imprecisely formulated, which gave space for various (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Marc Lange. The because of Because Without Cause: Non-Causal Explanations in Science and Mathematics.Daniele Molinini - forthcoming - Philosophia Mathematica:nky004.
    © The Authors [2018]. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected] article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model...In his Moby Dick, Herman Melville writes that “to produce a mighty book you must choose a mighty theme”. Marc Lange’s Because Without Cause is definitely an impressive book that deals with a mighty theme, that of non-causal explanations in the empirical sciences and in mathematics. Blending a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indispensability and explanation: an overview and introduction.Daniele Molinini, Fabrice Pataut & Andrea Sereni - 2016 - Synthese 193 (2):317-332.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Euler’s Königsberg: the explanatory power of mathematics.Tim Räz - 2017 - European Journal for Philosophy of Science 8:331–46.
    The present paper provides an analysis of Euler’s solutions to the Königsberg bridges problem. Euler proposes three different solutions to the problem, addressing their strengths and weaknesses along the way. I put the analysis of Euler’s paper to work in the philosophical discussion on mathematical explanations. I propose that the key ingredient to a good explanation is the degree to which it provides relevant information. Providing relevant information is based on knowledge of the structure in question, graphs in the present (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Fundamentality, Scale, and the Fractional Quantum Hall Effect.Elay Shech & Patrick McGivern - 2019 - Erkenntnis 86 (6):1411-1430.
    We examine arguments for distinguishing between ontological and epistemological concepts of fundamentality, focusing in particular on the role that scale plays in these concepts. Using the fractional quantum Hall effect as a case study, we show that we can draw a distinction between ontologically fundamental and non-fundamental theories without insisting that it is only the fundamental theories that get the ontology right: there are cases where non-fundamental theories involve distinct ontologies that better characterize real systems than fundamental ones do. In (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Road Work Ahead: Heavy Machinery on the Easy Road.M. Colyvan - 2012 - Mind 121 (484):1031-1046.
    In this paper I reply to Jody Azzouni, Otávio Bueno, Mary Leng, David Liggins, and Stephen Yablo, who offer defences of so-called ‘ easy road ’ nominalist strategies in the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Explanation in Biology: An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences.P.-A. Braillard and C. Malaterre (ed.) - 2015 - Springer.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A deductive-nomological model for mathematical scientific explanation.Eduardo Castro - 2020 - Principia: An International Journal of Epistemology 24 (1):1-27.
    I propose a deductive-nomological model for mathematical scientific explanation. In this regard, I modify Hempel’s deductive-nomological model and test it against some of the following recent paradigmatic examples of the mathematical explanation of empirical facts: the seven bridges of Königsberg, the North American synchronized cicadas, and Hénon-Heiles Hamiltonian systems. I argue that mathematical scientific explanations that invoke laws of nature are qualitative explanations, and ordinary scientific explanations that employ mathematics are quantitative explanations. I analyse the repercussions of this deductivenomological model (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation