Switch to: Citations

References in:

Learning to represent exact numbers

Synthese 198 (Suppl 5):1001-1018 (2015)

Add references

You must login to add references.
  1. Exact equality and successor function: Two key concepts on the path towards understanding exact numbers.Véronique Izard, Pierre Pica, Elizabeth S. Spelke & Stanislas Dehaene - 2008 - Philosophical Psychology 21 (4):491 – 505.
    Humans possess two nonverbal systems capable of representing numbers, both limited in their representational power: the first one represents numbers in an approximate fashion, and the second one conveys information about small numbers only. Conception of exact large numbers has therefore been thought to arise from the manipulation of exact numerical symbols. Here, we focus on two fundamental properties of the exact numbers as prerequisites to the concept of EXACT NUMBERS : the fact that all numbers can be generated by (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • From numerical concepts to concepts of number.Lance J. Rips, Amber Bloomfield & Jennifer Asmuth - 2008 - Behavioral and Brain Sciences 31 (6):623-642.
    Many experiments with infants suggest that they possess quantitative abilities, and many experimentalists believe that these abilities set the stage for later mathematics: natural numbers and arithmetic. However, the connection between these early and later skills is far from obvious. We evaluate two possible routes to mathematics and argue that neither is sufficient: (1) We first sketch what we think is the most likely model for infant abilities in this domain, and we examine proposals for extrapolating the natural number concept (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • The origin of concepts.Susan Carey - 2009 - New York: Oxford University Press.
    Only human beings have a rich conceptual repertoire with concepts like tort, entropy, Abelian group, mannerism, icon and deconstruction. How have humans constructed these concepts? And once they have been constructed by adults, how do children acquire them? While primarily focusing on the second question, in The Origin of Concepts , Susan Carey shows that the answers to both overlap substantially. Carey begins by characterizing the innate starting point for conceptual development, namely systems of core cognition. Representations of core cognition (...)
    Download  
     
    Export citation  
     
    Bookmark   480 citations  
  • Word and Object.Willard Van Orman Quine - 1960 - Les Etudes Philosophiques 17 (2):278-279.
    Download  
     
    Export citation  
     
    Bookmark   2862 citations  
  • The Number Sense: How the Mind Creates Mathematics.Stanislas Dehaene - 1999 - British Journal of Educational Studies 47 (2):201-203.
    Download  
     
    Export citation  
     
    Bookmark   245 citations  
  • The generative basis of natural number concepts.Alan M. Leslie, Rochel Gelman & C. R. Gallistel - 2008 - Trends in Cognitive Sciences 12 (6):213-218.
    Number concepts must support arithmetic inference. Using this principle, it can be argued that the integer concept of exactly ONE is a necessary part of the psychological foundations of number, as is the notion of the exact equality - that is, perfect substitutability. The inability to support reasoning involving exact equality is a shortcoming in current theories about the development of numerical reasoning. A simple innate basis for the natural number concepts can be proposed that embodies the arithmetic principle, supports (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Connecting numbers to discrete quantification: A step in the child’s construction of integer concepts.Emily Slusser, Annie Ditta & Barbara Sarnecka - 2013 - Cognition 129 (1):31-41.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • How counting represents number: What children must learn and when they learn it.Barbara W. Sarnecka & Susan Carey - 2008 - Cognition 108 (3):662-674.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles.Mathieu Le Corre & Susan Carey - 2007 - Cognition 105 (2):395-438.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Giving the boot to the bootstrap: How not to learn the natural numbers.Lance J. Rips, Jennifer Asmuth & Amber Bloomfield - 2006 - Cognition 101 (3):B51-B60.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Children's understanding of counting.Karen Wynn - 1990 - Cognition 36 (2):155-193.
    Download  
     
    Export citation  
     
    Bookmark   143 citations  
  • The Idea of an Exact Number: Children's Understanding of Cardinality and Equinumerosity.Barbara W. Sarnecka & Charles E. Wright - 2013 - Cognitive Science 37 (8):1493-1506.
    Understanding what numbers are means knowing several things. It means knowing how counting relates to numbers (called the cardinal principle or cardinality); it means knowing that each number is generated by adding one to the previous number (called the successor function or succession), and it means knowing that all and only sets whose members can be placed in one-to-one correspondence have the same number of items (called exact equality or equinumerosity). A previous study (Sarnecka & Carey, 2008) linked children's understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Conceptual Role Semantics.Ned Block - 1996 - In Edward Craig (ed.), Routledge Encyclopedia of Philosophy: Genealogy to Iqbal. New York: Routledge. pp. 242-256.
    According to Conceptual Role Semantics, the meaning of a representation is the role of that representation in the cognitive life of the agent, e.g. in perception, thought and decision-making. It is an extension of the well known "use" theory of meaning, according to which the meaning of a word is its use in communication and more generally, in social interaction. CRS supplements external use by including the role of a symbol inside a computer or a brain. The uses appealed to (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Core systems of number.Stanislas Dehaene, Elizabeth Spelke & Lisa Feigenson - 2004 - Trends in Cognitive Sciences 8 (7):307-314.
    Download  
     
    Export citation  
     
    Bookmark   297 citations  
  • Core multiplication in childhood.Elizabeth S. Spelke - 2010 - Cognition 116 (2):204-216.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Non-symbolic arithmetic in adults and young children.Hilary Barth, Kristen La Mont, Jennifer Lipton, Stanislas Dehaene, Nancy Kanwisher & Elizabeth Spelke - 2006 - Cognition 98 (3):199-222.
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Addition and subtraction by human infants. 358 (6389), 749-750. Xu, F., & Spelke, ES (2000). Large number discrimination in 6-month-old infants. [REVIEW]Karen Wynn - 1992 - Cognition 74 (1).
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Six does not just mean a lot: preschoolers see number words as specific.B. Sarnecka - 2004 - Cognition 92 (3):329-352.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Does learning to count involve a semantic induction?Kathryn Davidson, Kortney Eng & David Barner - 2012 - Cognition 123 (1):162-173.
    Download  
     
    Export citation  
     
    Bookmark   43 citations