Switch to: References

Add citations

You must login to add citations.
  1. Learning the Natural Numbers as a Child.Stefan Buijsman - 2017 - Noûs 53 (1):3-22.
    How do we get out knowledge of the natural numbers? Various philosophical accounts exist, but there has been comparatively little attention to psychological data on how the learning process actually takes place. I work through the psychological literature on number acquisition with the aim of characterising the acquisition stages in formal terms. In doing so, I argue that we need a combination of current neologicist accounts and accounts such as that of Parsons. In particular, I argue that we learn the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Young children's number-word knowledge predicts their performance on a nonlinguistic number task.James Negen & Barbara W. Sarnecka - 2009 - In N. A. Taatgen & H. van Rijn (eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society. pp. 2998--3003.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bootstrapping in a language of thought: A formal model of numerical concept learning.Steven T. Piantadosi, Joshua B. Tenenbaum & Noah D. Goodman - 2012 - Cognition 123 (2):199-217.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The logical syntax of number words: theory, acquisition and processing.Julien Musolino - 2009 - Cognition 111 (1):24-45.
    Recent work on the acquisition of number words has emphasized the importance of integrating linguistic and developmental perspectives [Musolino, J. (2004). The semantics and acquisition of number words: Integrating linguistic and developmental perspectives. Cognition93, 1-41; Papafragou, A., Musolino, J. (2003). Scalar implicatures: Scalar implicatures: Experiments at the semantics-pragmatics interface. Cognition, 86, 253-282; Hurewitz, F., Papafragou, A., Gleitman, L., Gelman, R. (2006). Asymmetries in the acquisition of numbers and quantifiers. Language Learning and Development, 2, 76-97; Huang, Y. T., Snedeker, J., Spelke, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The semantics and acquisition of number words: integrating linguistic and developmental perspectives.Julien Musolino - 2004 - Cognition 93 (1):1-41.
    This article brings together two independent lines of research on numerally quantified expressions, e.g. two girls. One stems from work in linguistic theory and asks what truth conditional contributions such expressions make to the utterances in which they are used--in other words, what do numerals mean? The other comes from the study of language development and asks when and how children learn the meaning of such expressions. My goal is to show that when integrated, these two perspectives can both constrain (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Quantity Recognition Among Speakers of an Anumeric Language.Caleb Everett & Keren Madora - 2012 - Cognitive Science 36 (1):130-141.
    Recent research has suggested that the Pirahã, an Amazonian tribe with a number-less language, are able to match quantities > 3 if the matching task does not require recall or spatial transposition. This finding contravenes previous work among the Pirahã. In this study, we re-tested the Pirahãs’ performance in the crucial one-to-one matching task utilized in the two previous studies on their numerical cognition, as well as in control tasks requiring recall and mental transposition. We also conducted a novel quantity (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Asymmetries in the Acquisition of Numbers and Quantifiers.Felicia Hurewitz, Anna Papafragou & Lila Gleitman - unknown
    Number terms and quantifiers share a range of linguistic (syntactic, semantic, and pragmatic) properties. On the basis of these similarities, one might expect these 2 classes of linguistic expression to pose similar problems to children acquiring language. We report here the results of an experiment that explicitly compared the acquisition of numerical expressions (two, four) and quantificational (some, all) expressions in younger and older 3-year-olds. Each group showed adult-like preferences for “exact” interpretations when evaluating number terms; however they did not (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Exact equality and successor function: Two key concepts on the path towards understanding exact numbers.Véronique Izard, Pierre Pica, Elizabeth S. Spelke & Stanislas Dehaene - 2008 - Philosophical Psychology 21 (4):491 – 505.
    Humans possess two nonverbal systems capable of representing numbers, both limited in their representational power: the first one represents numbers in an approximate fashion, and the second one conveys information about small numbers only. Conception of exact large numbers has therefore been thought to arise from the manipulation of exact numerical symbols. Here, we focus on two fundamental properties of the exact numbers as prerequisites to the concept of EXACT NUMBERS : the fact that all numbers can be generated by (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Non-symbolic arithmetic in adults and young children.Hilary Barth, Kristen La Mont, Jennifer Lipton, Stanislas Dehaene, Nancy Kanwisher & Elizabeth Spelke - 2006 - Cognition 98 (3):199-222.
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • From numerical concepts to concepts of number.Lance J. Rips, Amber Bloomfield & Jennifer Asmuth - 2008 - Behavioral and Brain Sciences 31 (6):623-642.
    Many experiments with infants suggest that they possess quantitative abilities, and many experimentalists believe that these abilities set the stage for later mathematics: natural numbers and arithmetic. However, the connection between these early and later skills is far from obvious. We evaluate two possible routes to mathematics and argue that neither is sufficient: (1) We first sketch what we think is the most likely model for infant abilities in this domain, and we examine proposals for extrapolating the natural number concept (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Don't throw the baby out with the math water: Why discounting the developmental foundations of early numeracy is premature and unnecessary.Kevin Muldoon, Charlie Lewis & Norman Freeman - 2008 - Behavioral and Brain Sciences 31 (6):663-664.
    We see no grounds for insisting that, because the concept natural number is abstract, its foundations must be innate. It is possible to specify domain general learning processes that feed into more abstract concepts of numerical infinity. By neglecting the messiness of children's slow acquisition of arithmetical concepts, Rips et al. present an idealized, unnecessarily insular, view of number development.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An extended mind perspective on natural number representation.Helen De Cruz - 2008 - Philosophical Psychology 21 (4):475 – 490.
    Experimental studies indicate that nonhuman animals and infants represent numerosities above three or four approximately and that their mental number line is logarithmic rather than linear. In contrast, human children from most cultures gradually acquire the capacity to denote exact cardinal values. To explain this difference, I take an extended mind perspective, arguing that the distinctly human ability to use external representations as a complement for internal cognitive operations enables us to represent natural numbers. Reviewing neuroscientific, developmental, and anthropological evidence, (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Priming scalar and ad hoc enrichment in children.Alice Rees, Ellie Carter & Lewis Bott - 2023 - Cognition 239 (C):105572.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Counting and the ontogenetic origins of exact equality.Rose M. Schneider, Erik Brockbank, Roman Feiman & David Barner - 2022 - Cognition 218 (C):104952.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On What Ground Do Thin Objects Exist? In Search of the Cognitive Foundation of Number Concepts.Markus Pantsar - 2023 - Theoria 89 (3):298-313.
    Linnebo in 2018 argues that abstract objects like numbers are “thin” because they are only required to be referents of singular terms in abstraction principles, such as Hume's principle. As the specification of existence claims made by analytic truths (the abstraction principles), their existence does not make any substantial demands of the world; however, as Linnebo notes, there is a potential counter-argument concerning infinite regress against introducing objects this way. Against this, he argues that vicious regress is avoided in the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Building blocks for a cognitive science-led epistemology of arithmetic.Stefan Buijsman - 2021 - Philosophical Studies 179 (5):1777-1794.
    In recent years philosophers have used results from cognitive science to formulate epistemologies of arithmetic :5–18, 2001). Such epistemologies have, however, been criticised, e.g. by Azzouni, for interpreting the capacities found by cognitive science in an overly numerical way. I offer an alternative framework for the way these psychological processes can be combined, forming the basis for an epistemology for arithmetic. The resulting framework avoids assigning numerical content to the Approximate Number System and Object Tracking System, two systems that have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Situated Counting.Peter Gärdenfors & Paula Quinon - 2020 - Review of Philosophy and Psychology 12 (4):721-744.
    We present a model of how counting is learned based on the ability to perform a series of specific steps. The steps require conceptual knowledge of three components: numerosity as a property of collections; numerals; and one-to-one mappings between numerals and collections. We argue that establishing one-to-one mappings is the central feature of counting. In the literature, the so-called cardinality principle has been in focus when studying the development of counting. We submit that identifying the procedural ability to count with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Building blocks for a cognitive science-led epistemology of arithmetic.Stefan Buijsman - 2021 - Philosophical Studies 179 (5):1-18.
    In recent years philosophers have used results from cognitive science to formulate epistemologies of arithmetic :5–18, 2001). Such epistemologies have, however, been criticised, e.g. by Azzouni, for interpreting the capacities found by cognitive science in an overly numerical way. I offer an alternative framework for the way these psychological processes can be combined, forming the basis for an epistemology for arithmetic. The resulting framework avoids assigning numerical content to the Approximate Number System and Object Tracking System, two systems that have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cognitive Structuralism: Explaining the Regularity of the Natural Numbers Progression.Paula Quinon - 2022 - Review of Philosophy and Psychology 13 (1):127-149.
    According to one of the most powerful paradigms explaining the meaning of the concept of natural number, natural numbers get a large part of their conceptual content from core cognitive abilities. Carey’s bootstrapping provides a model of the role of core cognition in the creation of mature mathematical concepts. In this paper, I conduct conceptual analyses of various theories within this paradigm, concluding that the theories based on the ability to subitize (i.e., to assess anexactquantity of the elements in a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Situated Counting.Peter Gärdenfors & Paula Quinon - 2020 - Review of Philosophy and Psychology 12 (4):1-24.
    We present a model of how counting is learned based on the ability to perform a series of specific steps. The steps require conceptual knowledge of three components: numerosity as a property of collections; numerals; and one-to-one mappings between numerals and collections. We argue that establishing one-to-one mappings is the central feature of counting. In the literature, the so-called cardinality principle has been in focus when studying the development of counting. We submit that identifying the procedural ability to count with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Happy Little Benefactor: Prosocial Behaviors Promote Happiness in Young Children From Two Cultures.Yue Song, Martine Louise Broekhuizen & Judith Semon Dubas - 2020 - Frontiers in Psychology 11.
    Download  
     
    Export citation  
     
    Bookmark  
  • Contrast and entailment: Abstract logical relations constrain how 2- and 3-year-old children interpret unknown numbers.Roman Feiman, Joshua K. Hartshorne & David Barner - 2019 - Cognition 183 (C):192-207.
    Do children understand how different numbers are related before they associate them with specific cardinalities? We explored how children rely on two abstract relations – contrast and entailment – to reason about the meanings of ‘unknown’ number words. Previous studies argue that, because children give variable amounts when asked to give an unknown number, all unknown numbers begin with an existential meaning akin to some. In Experiment 1, we tested an alternative hypothesis, that because numbers belong to a scale of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Testimony and Children’s Acquisition of Number Concepts.Helen De Cruz - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge: Approaches From Psychology and Cognitive Science. New York: Routledge. pp. 172-186.
    An enduring puzzle in philosophy and developmental psychology is how young children acquire number concepts, in particular the concept of natural number. Most solutions to this problem conceptualize young learners as lone mathematicians who individually reconstruct the successor function and other sophisticated mathematical ideas. In this chapter, I argue for a crucial role of testimony in children’s acquisition of number concepts, both in the transfer of propositional knowledge (e.g., the cardinality concept), and in knowledge-how (e.g., the counting routine).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Preschool children use space, rather than counting, to infer the numerical magnitude of digits: Evidence for a spatial mapping principle.Francesco Sella, Ilaria Berteletti, Daniela Lucangeli & Marco Zorzi - 2017 - Cognition 158 (C):56-67.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Learning to represent exact numbers.Barbara W. Sarnecka - 2015 - Synthese 198 (Suppl 5):1001-1018.
    This article focuses on how young children acquire concepts for exact, cardinal numbers. I believe that exact numbers are a conceptual structure that was invented by people, and that most children acquire gradually, over a period of months or years during early childhood. This article reviews studies that explore children’s number knowledge at various points during this acquisition process. Most of these studies were done in my own lab, and assume the theoretical framework proposed by Carey. In this framework, the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Learning phonetic categories by tracking movements.Henry Gleitman, Chris Donlan, Richard Cowan, Elizabeth J. Newton, Delyth Lloyd, Rachel Robbins, Elinor Mckone, Bruno Gauthier, Rushen Shi & Yi Xu - 2007 - Cognition 103 (1):80-106.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Connecting numbers to discrete quantification: A step in the child’s construction of integer concepts.Emily Slusser, Annie Ditta & Barbara Sarnecka - 2013 - Cognition 129 (1):31-41.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Number words in young children’s conceptual and procedural knowledge of addition, subtraction and inversion.Katherine H. Canobi & Narelle E. Bethune - 2008 - Cognition 108 (3):675-686.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How counting represents number: What children must learn and when they learn it.Barbara W. Sarnecka & Susan Carey - 2008 - Cognition 108 (3):662-674.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Do children learn the integers by induction?Lance J. Rips, Jennifer Asmuth & Amber Bloomfield - 2008 - Cognition 106 (2):940-951.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles.Mathieu Le Corre & Susan Carey - 2007 - Cognition 105 (2):395-438.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • The role of language in mathematical development: Evidence from children with specific language impairments.Chris Donlan, Richard Cowan, Elizabeth J. Newton & Delyth Lloyd - 2007 - Cognition 103 (1):23-33.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Giving the boot to the bootstrap: How not to learn the natural numbers.Lance J. Rips, Jennifer Asmuth & Amber Bloomfield - 2006 - Cognition 101 (3):B51-B60.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Does learning to count involve a semantic induction?Kathryn Davidson, Kortney Eng & David Barner - 2012 - Cognition 123 (1):162-173.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • A Model of Knower‐Level Behavior in Number Concept Development.Michael D. Lee & Barbara W. Sarnecka - 2010 - Cognitive Science 34 (1):51-67.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • A systematic, large-scale study of synaesthesia: implications for the role of early experience in lexical-colour associations.Anina N. Rich, John L. Bradshaw & Jason B. Mattingley - 2005 - Cognition 98 (1):53-84.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • The Idea of an Exact Number: Children's Understanding of Cardinality and Equinumerosity.Barbara W. Sarnecka & Charles E. Wright - 2013 - Cognitive Science 37 (8):1493-1506.
    Understanding what numbers are means knowing several things. It means knowing how counting relates to numbers (called the cardinal principle or cardinality); it means knowing that each number is generated by adding one to the previous number (called the successor function or succession), and it means knowing that all and only sets whose members can be placed in one-to-one correspondence have the same number of items (called exact equality or equinumerosity). A previous study (Sarnecka & Carey, 2008) linked children's understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Proceedings of Sinn und Bedeutung 15, Saarbruecken.Ingo Reich (ed.) - 2010 - Saarbrücken: Universitätsverlag des Saarlandes.
    Download  
     
    Export citation  
     
    Bookmark  
  • Preschool children master the logic of number word meanings.Jennifer S. Lipton & Elizabeth S. Spelke - 2006 - Cognition 98 (3):57-66.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Seven does not mean natural number, and children know more than you think.Barbara W. Sarnecka - 2008 - Behavioral and Brain Sciences 31 (6):668-669.
    Rips et al.'s critique is misplaced when it faults the induction model for not explaining the acquisition of meta-numerical knowledge: This is something the model was never meant to explain. More importantly, the critique underestimates what children know, and what they have achieved, when they learn the cardinal meanings of the number words through.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Verbal counting and spatial strategies in numerical tasks: Evidence from indigenous australia.Brian Butterworth & Robert Reeve - 2008 - Philosophical Psychology 21 (4):443 – 457.
    In this study, we test whether children whose culture lacks CWs and counting practices use a spatial strategy to support enumeration tasks. Children from two indigenous communities in Australia whose native and only language (Warlpiri or Anindilyakwa) lacked CWs and were tested on classical number development tasks, and the results were compared with those of children reared in an English-speaking environment. We found that Warlpiri- and Anindilyakwa-speaking children performed equivalently to their English-speaking counterparts. However, in tasks in which they were (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations