Switch to: Citations

Add references

You must login to add references.
  1. Der Raum: Ein Beitrag zur Wissenschaftslehre.Rudolf Carnap - 1921 - Berlin: Reuther & Reichard.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2002 - Philosophy and Phenomenological Research 65 (2):467-475.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • The structuralist view of mathematical objects.Charles Parsons - 1990 - Synthese 84 (3):303 - 346.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • Kant und die moderne Mathematik. (Mit Bezug auf Bertrand Russells und Louis Couturats Werke über die Prinzipien der Mathematik.).Ernst Cassirer - 1907 - Kant Studien 12 (1-3):1-49.
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • Structuralism and the notion of dependence.Øystein Linnebo - 2008 - Philosophical Quarterly 58 (230):59-79.
    This paper has two goals. The first goal is to show that the structuralists’ claims about dependence are more significant to their view than is generally recognized. I argue that these dependence claims play an essential role in the most interesting and plausible characterization of this brand of structuralism. The second goal is to defend a compromise view concerning the dependence relations that obtain between mathematical objects. Two extreme views have tended to dominate the debate, namely the view that all (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Space, Number, and Geometry From Helmholtz to Cassirer.Francesca Biagioli - 2016 - Cham: Springer Verlag.
    This book offers a reconstruction of the debate on non-Euclidean geometry in neo-Kantianism between the second half of the nineteenth century and the first decades of the twentieth century. Kant famously characterized space and time as a priori forms of intuitions, which lie at the foundation of mathematical knowledge. The success of his philosophical account of space was due not least to the fact that Euclidean geometry was widely considered to be a model of certainty at his time. However, such (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Was Sind und was Sollen Die Zahlen?Richard Dedekind - 1888 - Cambridge University Press.
    This influential 1888 publication explained the real numbers, and their construction and properties, from first principles.
    Download  
     
    Export citation  
     
    Bookmark   189 citations  
  • Mathematics as a Science of Patterns.Michael D. Resnik - 1997 - Oxford, GB: Oxford University Press UK.
    Mathematics as a Science of Patterns is the definitive exposition of a system of ideas about the nature of mathematics which Michael Resnik has been elaborating for a number of years. In calling mathematics a science he implies that it has a factual subject-matter and that mathematical knowledge is on a par with other scientific knowledge; in calling it a science of patterns he expresses his commitment to a structuralist philosophy of mathematics. He links this to a defence of realism (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • (1 other version)Die logischen Grundlagen der exakten Wissenschaften.Paul Natorp - 1910 - Revue de Métaphysique et de Morale 18 (5):16-21.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Dedekind's structuralism: An interpretation and partial defense.Erich H. Reck - 2003 - Synthese 137 (3):369 - 419.
    Various contributors to recent philosophy of mathematics havetaken Richard Dedekind to be the founder of structuralismin mathematics. In this paper I examine whether Dedekind did, in fact, hold structuralist views and, insofar as that is the case, how they relate to the main contemporary variants. In addition, I argue that his writings contain philosophical insights that are worth reexamining and reviving. The discussion focusses on Dedekind''s classic essay Was sind und was sollen die Zahlen?, supplemented by evidence from Stetigkeit und (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Philosophy of Geometry from Riemann to Poincaré.Nicholas Griffin - 1981 - Philosophical Quarterly 31 (125):374.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • From a Geometrical Point of view: a study in the history and philosophy of category theory.Jean-Pierre Marquis - 2009 - Springer.
    A Study of the History and Philosophy of Category Theory Jean-Pierre Marquis. to say that objects are dispensable in geometry. What is claimed is that the specific nature of the objects used is irrelevant. To use the terminology already ...
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Hilbert, Duality, and the Geometrical Roots of Model Theory.Günther Eder & Georg Schiemer - 2018 - Review of Symbolic Logic 11 (1):48-86.
    The article investigates one of the key contributions to modern structural mathematics, namely Hilbert’sFoundations of Geometry(1899) and its mathematical roots in nineteenth-century projective geometry. A central innovation of Hilbert’s book was to provide semantically minded independence proofs for various fragments of Euclidean geometry, thereby contributing to the development of the model-theoretic point of view in logical theory. Though it is generally acknowledged that the development of model theory is intimately bound up with innovations in 19th century geometry (in particular, the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Pasch’s philosophy of mathematics.Dirk Schlimm - 2010 - Review of Symbolic Logic 3 (1):93-118.
    Moritz Pasch (1843ber neuere Geometrie (1882), in which he also clearly formulated the view that deductions must be independent from the meanings of the nonlogical terms involved. Pasch also presented in these lectures the main tenets of his philosophy of mathematics, which he continued to elaborate on throughout the rest of his life. This philosophy is quite unique in combining a deductivist methodology with a radically empiricist epistemology for mathematics. By taking into consideration publications from the entire span of Paschs (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Ways of Hilbert's Axiomatics: Structural and Formal.Wilfried Sieg - 2014 - Perspectives on Science 22 (1):133-157.
    It is a remarkable fact that Hilbert's programmatic papers from the 1920s still shape, almost exclusively, the standard contemporary perspective of his views concerning (the foundations of) mathematics; even his own, quite different work on the foundations of geometry and arithmetic from the late 1890s is often understood from that vantage point. My essay pursues one main goal, namely, to contrast Hilbert's formal axiomatic method from the early 1920s with his existential axiomatic approach from the 1890s. Such a contrast illuminates (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Reflections on the purity of method in Hilbert's Grundlagen der Geometrie.Michael Hallett - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (2 other versions)Die Logischen Grundlagen der Exakten Wissenschaften. [REVIEW]Morris R. Cohen - 1911 - Journal of Philosophy, Psychology and Scientific Methods 8 (25):693-697.
    Download  
     
    Export citation  
     
    Bookmark   4 citations