Switch to: Citations

Add references

You must login to add references.
  1. Recursively enumerable sets modulo iterated jumps and extensions of Arslanov's completeness criterion.C. G. Jockusch, M. Lerman, R. I. Soare & R. M. Solovay - 1989 - Journal of Symbolic Logic 54 (4):1288-1323.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • N? Sets and models of wkl0.Stephen G. Simpson - 2005 - In Stephen Simpson (ed.), Reverse Mathematics 2001. Association for Symbolic Logic. pp. 21--352.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Models of Peano Arithmetic.Richard Kaye - 1991 - Clarendon Press.
    An introduction to the developments of nonstandard models. Beginning with Godel's incompleteness theorem, it covers the prime models, cofinal extensions, and extensions, Gaifman's construction of a definable type, Tennenbaum's theorem and Friedman's theorem on indicators, ending with a chapter on recursive saturation and resplendency.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Gerald E. Sacks. The recursively enumerable degrees are dense. Annals of mathematics, ser. 2 vol. 80 (1964), pp. 300–312. [REVIEW]Gerald E. Sacks - 1969 - Journal of Symbolic Logic 34 (2):294-295.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • A splitting theorem for the Medvedev and Muchnik lattices.Stephen Binns - 2003 - Mathematical Logic Quarterly 49 (4):327.
    This is a contribution to the study of the Muchnik and Medvedev lattices of non-empty Π01 subsets of 2ω. In both these lattices, any non-minimum element can be split, i. e. it is the non-trivial join of two other elements. In fact, in the Medvedev case, ifP > MQ, then P can be split above Q. Both of these facts are then generalised to the embedding of arbitrary finite distributive lattices. A consequence of this is that both lattices have decidible (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Topological aspects of the Medvedev lattice.Andrew Em Lewis, Richard A. Shore & Andrea Sorbi - 2011 - Archive for Mathematical Logic 50 (3-4):319-340.
    We study the Medvedev degrees of mass problems with distinguished topological properties, such as denseness, closedness, or discreteness. We investigate the sublattices generated by these degrees; the prime ideal generated by the dense degrees and its complement, a prime filter; the filter generated by the nonzero closed degrees and the filter generated by the nonzero discrete degrees. We give a complete picture of the relationships of inclusion holding between these sublattices, these filters, and this ideal. We show that the sublattice (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Degree structures: Local and global investigations.Richard A. Shore - 2006 - Bulletin of Symbolic Logic 12 (3):369-389.
    The occasion of a retiring presidential address seems like a time to look back, take stock and perhaps look ahead.Institutionally, it was an honor to serve as President of the Association and I want to thank my teachers and predecessors for guidance and advice and my fellow officers and our publisher for their work and support. To all of the members who answered my calls to chair or serve on this or that committee, I offer my thanks as well. Your (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Non-Branching Degrees in the Medvedev Lattice of [image] Classes.Christopher P. Alfeld - 2007 - Journal of Symbolic Logic 72 (1):81 - 97.
    A $\Pi _{1}^{0}$ class is the set of paths through a computable tree. Given classes P and Q, P is Medvedev reducible to Q, P ≤M Q, if there is a computably continuous functional mapping Q into P. We look at the lattice formed by $\Pi _{1}^{0}$ subclasses of 2ω under this reduction. It is known that the degree of a splitting class of c.e. sets is non-branching. We further characterize non-branching degrees, providing two additional properties which guarantee non-branching: inseparable (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Density of the Medvedev lattice of Π0 1 classes.Douglas Cenzer & Peter G. Hinman - 2003 - Archive for Mathematical Logic 42 (6):583-600.
    The partial ordering of Medvedev reducibility restricted to the family of Π0 1 classes is shown to be dense. For two disjoint computably enumerable sets, the class of separating sets is an important example of a Π0 1 class, which we call a ``c.e. separating class''. We show that there are no non-trivial meets for c.e. separating classes, but that the density theorem holds in the sublattice generated by the c.e. separating classes.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A Note on Closed Degrees of Difficulty of the Medvedev Lattice.Caterina Bianchini & Andrea Sorbi - 1996 - Mathematical Logic Quarterly 42 (1):127-133.
    We consider some nonprincipal filters of the Medvedev lattice. We prove that the filter generated by the nonzero closed degrees of difficulty is not principal and we compare this filter, with respect to inclusion, with some other filters of the lattice. All the filters considered in this paper are disjoint from the prime ideal generated by the dense degrees of difficulty.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the Degrees Less than 0'.Gerald E. Sacks - 1964 - Journal of Symbolic Logic 29 (1):60-60.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Degrees of unsolvability: local and global theory.Manuel Lerman - 1983 - New York: Springer Verlag.
    I first seriously contemplated writing a book on degree theory in 1976 while I was visiting the University of Illinois at Chicago Circle. There was, at that time, some interest in ann-series book about degree theory, and through the encouragement of Bob Soare, I decided to make a proposal to write such a book. Degree theory had, at that time, matured to the point where the local structure results which had been the mainstay of the earlier papers in the area (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Coding true arithmetic in the Medvedev and Muchnik degrees.Paul Shafer - 2011 - Journal of Symbolic Logic 76 (1):267 - 288.
    We prove that the first-order theory of the Medvedev degrees, the first-order theory of the Muchnik degrees, and the third-order theory of true arithmetic are pairwise recursively isomorphic (obtained independently by Lewis, Nies, and Sorbi [7]). We then restrict our attention to the degrees of closed sets and prove that the following theories are pairwise recursively isomorphic: the first-order theory of the closed Medvedev degrees, the first-order theory of the compact Medvedev degrees, the first-order theory of the closed Muchnik degrees, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The ∀∃-theory of the effectively closed Medvedev degrees is decidable.Joshua A. Cole & Takayuki Kihara - 2010 - Archive for Mathematical Logic 49 (1):1-16.
    We show that there is a computable procedure which, given an ∀∃-sentence ${\varphi}$ in the language of the partially ordered sets with a top element 1 and a bottom element 0, computes whether ${\varphi}$ is true in the Medvedev degrees of ${\Pi^0_1}$ classes in Cantor space, sometimes denoted by ${\mathcal{P}_s}$.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Recursive Enumerability and the Jump Operator.Gerald E. Sacks - 1964 - Journal of Symbolic Logic 29 (4):204-204.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Embeddings into the Medvedev and Muchnik lattices of Π0 1 classes.Stephen Binns & Stephen G. Simpson - 2004 - Archive for Mathematical Logic 43 (3):399-414.
    Let w and M be the countable distributive lattices of Muchnik and Medvedev degrees of non-empty Π1 0 subsets of 2ω, under Muchnik and Medvedev reducibility, respectively. We show that all countable distributive lattices are lattice-embeddable below any non-zero element of w . We show that many countable distributive lattices are lattice-embeddable below any non-zero element of M.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Characterizing the Join-Irreducible Medvedev Degrees.Paul Shafer - 2011 - Notre Dame Journal of Formal Logic 52 (1):21-38.
    We characterize the join-irreducible Medvedev degrees as the degrees of complements of Turing ideals, thereby solving a problem posed by Sorbi. We use this characterization to prove that there are Medvedev degrees above the second-least degree that do not bound any join-irreducible degrees above this second-least degree. This solves a problem posed by Sorbi and Terwijn. Finally, we prove that the filter generated by the degrees of closed sets is not prime. This solves a problem posed by Bianchini and Sorbi.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Medvedev Lattice of Degrees of Difficulty.Andrea Sorbi - 1996 - In S. B. Cooper, T. A. Slaman & S. S. Wainer (eds.), Computability, enumerability, unsolvability: directions in recursion theory. New York: Cambridge University Press. pp. 224--289.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mass problems and hyperarithmeticity.Joshua A. Cole & Stephen G. Simpson - 2007 - Journal of Mathematical Logic 7 (2):125-143.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let [Formula: see text] be the lattice of weak degrees of mass problems associated with nonempty [Formula: see text] subsets of the Cantor (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Review: Ju. V. Matijasevic, A. Doohovskoy, Enumerable Sets are Diophantine. [REVIEW]Julia Robinson - 1972 - Journal of Symbolic Logic 37 (3):605-606.
    Download  
     
    Export citation  
     
    Bookmark   9 citations