Switch to: Citations

References in:

Logicism and Neologicism

Stanford Encyclopedia of Philosophy (2013)

Add references

You must login to add references.
  1. Neo-Fregeanism: An Embarrassment of Riches.Alan Weir - 2003 - Notre Dame Journal of Formal Logic 44 (1):13-48.
    Neo-Fregeans argue that substantial mathematics can be derived from a priori abstraction principles, Hume's Principle connecting numerical identities with one:one correspondences being a prominent example. The embarrassment of riches objection is that there is a plurality of consistent but pairwise inconsistent abstraction principles, thus not all consistent abstractions can be true. This paper considers and criticizes various further criteria on acceptable abstractions proposed by Wright settling on another one—stability—as the best bet for neo-Fregeans. However, an analogue of the embarrassment of (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • (2 other versions)The Limits of Abstraction.Kit Fine - 2004 - Bulletin of Symbolic Logic 10 (4):554-557.
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   237 citations  
  • (1 other version)Frege: Philosophy of Mathematics.Michael DUMMETT - 1991 - Philosophy 68 (265):405-411.
    Download  
     
    Export citation  
     
    Bookmark   223 citations  
  • Logicism Reconsidered.Agustín Rayo - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press.
    Roughly, logicism is the view that mathematics is logic. This chapter identifies several distinct logicist theses, and shows that their truth-values can be established on minimal assumptions. There is also a discussion of “Neo-Logicism.”.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Abstraction Reconceived.J. P. Studd - 2016 - British Journal for the Philosophy of Science 67 (2):579-615.
    Neologicists have sought to ground mathematical knowledge in abstraction. One especially obstinate problem for this account is the bad company problem. The leading neologicist strategy for resolving this problem is to attempt to sift the good abstraction principles from the bad. This response faces a dilemma: the system of ‘good’ abstraction principles either falls foul of the Scylla of inconsistency or the Charybdis of being unable to recover a modest portion of Zermelo–Fraenkel set theory with its intended generality. This article (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Kleine Schriften.Gottlob Frege & Ignacio Angelelli - 1967 - G. Olms.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Plural Logicism.Francesca Boccuni - 2013 - Erkenntnis 78 (5):1051-1067.
    PG (Plural Grundgesetze) is a consistent second-order system which is aimed to derive second-order Peano arithmetic. It employs the notion of plural quantification and a few Fregean devices, among which the infamous Basic Law V. George Boolos’ plural semantics is replaced with Enrico Martino’s Acts of Choice Semantics (ACS), which is developed from the notion of arbitrary reference in mathematical reasoning. Also, substitutional quantification is exploited to interpret quantification into predicate position. ACS provides a form of logicism which is radically (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Julius Caesar objection.Richard Heck - 1997 - In Richard G. Heck (ed.), Language, thought, and logic: essays in honour of Michael Dummett. New York: Oxford University Press. pp. 273--308.
    This paper argues that that Caesar problem had a technical aspect, namely, that it threatened to make it impossible to prove, in the way Frege wanted, that there are infinitely many numbers. It then offers a solution to the problem, one that shows Frege did not really need the claim that "numbers are objects", not if that claim is intended in a form that forces the Caesar problem upon us.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Logic, semantics, metamathematics.Alfred Tarski - 1956 - Oxford,: Clarendon Press. Edited by John Corcoran & J. H. Woodger.
    I ON THE PRIMITIVE TERM OF LOGISTICf IN this article I propose to establish a theorem belonging to logistic concerning some connexions, not widely known, ...
    Download  
     
    Export citation  
     
    Bookmark   401 citations  
  • From Kant to Hilbert: a source book in the foundations of mathematics.William Bragg Ewald (ed.) - 1996 - New York: Oxford University Press.
    This massive two-volume reference presents a comprehensive selection of the most important works on the foundations of mathematics. While the volumes include important forerunners like Berkeley, MacLaurin, and D'Alembert, as well as such followers as Hilbert and Bourbaki, their emphasis is on the mathematical and philosophical developments of the nineteenth century. Besides reproducing reliable English translations of classics works by Bolzano, Riemann, Hamilton, Dedekind, and Poincare, William Ewald also includes selections from Gauss, Cantor, Kronecker, and Zermelo, all translated here for (...)
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • The seas of language.Michael Dummett - 1993 - New York: Oxford University Press.
    Michael Dummett is a leading contemporary philosopher whose work on the logic and metaphysics of language has had a lasting influence on how these subjects are conceived and discussed. This volume contains some of the most provocative and widely discussed essays published in the last fifteen years, together with a number of unpublished or inaccessible writings. Essays included are: "What is a Theory of Meaning?," "What do I Know When I Know a Language?," "What Does the Appeal to Use Do (...)
    Download  
     
    Export citation  
     
    Bookmark   246 citations  
  • Kant and the exact sciences.Michael Friedman - 1992 - Cambridge: Harvard University Press.
    In this new book, Michael Friedman argues that Kant's continuing efforts to find a metaphysics that could provide a foundation for the sciences is of the utmost ...
    Download  
     
    Export citation  
     
    Bookmark   256 citations  
  • Frege, Kant, and the logic in logicism.John MacFarlane - 2002 - Philosophical Review 111 (1):25-65.
    Let me start with a well-known story. Kant held that logic and conceptual analysis alone cannot account for our knowledge of arithmetic: “however we might turn and twist our concepts, we could never, by the mere analysis of them, and without the aid of intuition, discover what is the sum [7+5]” (KrV, B16). Frege took himself to have shown that Kant was wrong about this. According to Frege’s logicist thesis, every arithmetical concept can be defined in purely logical terms, and (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   592 citations  
  • Fixing Frege.John P. Burgess - 2005 - Princeton University Press.
    The great logician Gottlob Frege attempted to provide a purely logical foundation for mathematics. His system collapsed when Bertrand Russell discovered a contradiction in it. Thereafter, mathematicians and logicians, beginning with Russell himself, turned in other directions to look for a framework for modern abstract mathematics. Over the past couple of decades, however, logicians and philosophers have discovered that much more is salvageable from the rubble of Frege's system than had previously been assumed. A variety of repaired systems have been (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Word and Object.Willard Van Orman Quine - 1960 - Les Etudes Philosophiques 17 (2):278-279.
    Download  
     
    Export citation  
     
    Bookmark   2887 citations  
  • Natural Numbers and Natural Cardinals as Abstract Objects: A Partial Reconstruction of Frege"s Grundgesetze in Object Theory.Edward N. Zalta - 1999 - Journal of Philosophical Logic 28 (6):619-660.
    In this paper, the author derives the Dedekind-Peano axioms for number theory from a consistent and general metaphysical theory of abstract objects. The derivation makes no appeal to primitive mathematical notions, implicit definitions, or a principle of infinity. The theorems proved constitute an important subset of the numbered propositions found in Frege's *Grundgesetze*. The proofs of the theorems reconstruct Frege's derivations, with the exception of the claim that every number has a successor, which is derived from a modal axiom that (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Minimal Logicism.Francesca Boccuni - 2014 - Philosophia Scientiae 18:81-94.
    PLV (Plural Basic Law V) is a consistent second-order system which is aimed to derive second-order Peano arithmetic. It employs the notion of plural quantification and a first-order formulation of Frege's infamous Basic Law V. George Boolos' plural semantics is replaced with Enrico Martino's Acts of Choice Semantics (ACS), which is developed from the notion of arbitrary reference in mathematical reasoning. ACS provides a form of logicism which is radically alternative to Frege's and which is grounded on the existence of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Introduction.Øystein Linnebo - 2009 - Synthese 170 (3):321-329.
    Neo-Fregean logicism seeks to base mathematics on abstraction principles. But the acceptable abstraction principles are surrounded by unacceptable ones. This is the "bad company problem." In this introduction I first provide a brief historical overview of the problem. Then I outline the main responses that are currently being debated. In the course of doing so I provide summaries of the contributions to this special issue.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Neo-Fregeans: In Bad Company?Michael Dummett - 1998 - In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • On the harmless impredicativity of N=('Hume's Principle').Crispin Wright - 1998 - In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press. pp. 339--68.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (1 other version)Mathematical Logic as Based on the Theory of Types.Bertrand Russell - 1908 - American Journal of Mathematics 30 (3):222-262.
    Download  
     
    Export citation  
     
    Bookmark   285 citations  
  • Frege: The Last Logicist.Paul Benacerraf - 1981 - Midwest Studies in Philosophy 6 (1):17-36.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Natural deduction: a proof-theoretical study.Dag Prawitz - 1965 - Mineola, N.Y.: Dover Publications.
    This volume examines the notion of an analytic proof as a natural deduction, suggesting that the proof's value may be understood as its normal form--a concept with significant implications to proof-theoretic semantics.
    Download  
     
    Export citation  
     
    Bookmark   349 citations  
  • Anti-realism and logic: truth as eternal.Neil Tennant - 1987 - New York: Oxford University Press.
    Anti-realism is a doctrine about logic, language, and meaning that is based on the work of Wittgenstein and Frege. In this book, Professor Tennant clarifies and develops Dummett's arguments for anti-realism and ultimately advocates a radical reform of our logical practices.
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • The state of the economy: Neo-logicism and inflation.Rov T. Cook - 2002 - Philosophia Mathematica 10 (1):43-66.
    In this paper I examine the prospects for a successful neo–logicist reconstruction of the real numbers, focusing on Bob Hale's use of a cut-abstraction principle. There is a serious problem plaguing Hale's project. Natural generalizations of this principle imply that there are far more objects than one would expect from a position that stresses its epistemological conservativeness. In other words, the sort of abstraction needed to obtain a theory of the reals is rampantly inflationary. I also indicate briefly why this (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Logic of Number.Neil Tennant - 2022 - Oxford University Press.
    This book develops Tennant's Natural Logicist account of the foundations of the natural, rational, and real numbers. Tennant uses this framework to distinguish the logical from the intuitive aspects of the basic elements of arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (2 other versions)The Limits of Abstraction.Kit Fine - 1998 - In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • (2 other versions)Principia mathematica.A. N. Whitehead & B. Russell - 1910-1913 - Revue de Métaphysique et de Morale 19 (2):19-19.
    Download  
     
    Export citation  
     
    Bookmark   241 citations  
  • Grundgesetze der Arithmetik.Gottlob Frege - 1893 - Hildesheim,: G.Olms.
    Download  
     
    Export citation  
     
    Bookmark   147 citations  
  • Frege meets dedekind: A neologicist treatment of real analysis.Stewart Shapiro - 2000 - Notre Dame Journal of Formal Logic 41 (4):335--364.
    This paper uses neo-Fregean-style abstraction principles to develop the integers from the natural numbers (assuming Hume’s principle), the rational numbers from the integers, and the real numbers from the rationals. The first two are first-order abstractions that treat pairs of numbers: (DIF) INT(a,b)=INT(c,d) ≡ (a+d)=(b+c). (QUOT) Q(m,n)=Q(p,q) ≡ (n=0 & q=0) ∨ (n≠0 & q≠0 & m⋅q=n⋅p). The development of the real numbers is an adaption of the Dedekind program involving “cuts” of rational numbers. Let P be a property (of (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Die logizistische grundlegung der mathematik.Rudolf Carnap - 1931 - Erkenntnis 2 (1):91-105.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Twenty-five basic theorems in situation and world theory.Edward N. Zalta - 1993 - Journal of Philosophical Logic 22 (4):385-428.
    The foregoing set of theorems forms an effective foundation for the theory of situations and worlds. All twenty-five theorems seem to be basic, reasonable principles that structure the domains of properties, relations, states of affairs, situations, and worlds in true and philosophically interesting ways. They resolve 15 of the 19 choice points defined in Barwise (1989) (see Notes 22, 27, 31, 32, 35, 36, 39, 43, and 45). Moreover, important axioms and principles stipulated by situation theorists are derived (see Notes (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • The philosophical basis of our knowledge of number.William Demopoulos - 1998 - Noûs 32 (4):481-503.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Foundations of Logic and Mathematics.Rudolf Carnap - 1938 - In Otto Neurath, Rudolf Carnap & Charles William Morris (eds.), International Encyclopedia of Unified Science: Foundations of the unity of science... University Press. pp. 139--213.
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl.Gottlob Frege - 1884 - Wittgenstein-Studien 3 (2):993-999.
    Download  
     
    Export citation  
     
    Bookmark   327 citations  
  • Begriffsschrift: Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens.Gottlob Frege - 1879 - Halle a.d.S.: Louis Nebert.
    Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens / von Dr. Gottlob Frege,...Date de l'edition originale : 1879Ce livre est la reproduction fidele d'une oeuvre publiee avant 1920 et fait partie d'une collection de livres reimprimes a la demande editee par Hachette Livre, dans le cadre d'un partenariat avec la Bibliotheque nationale de France, offrant l'opportunite d'acceder a des ouvrages anciens et souvent rares issus des fonds patrimoniaux de la BnF.Les oeuvres faisant partie de cette collection ont ete numerisees (...)
    Download  
     
    Export citation  
     
    Bookmark   327 citations  
  • Abstraction and Infinity.Paolo Mancosu - 2016 - Oxford, England: Oxford University Press.
    Paolo Mancosu provides an original investigation of historical and systematic aspects of the notions of abstraction and infinity and their interaction. A familiar way of introducing concepts in mathematics rests on so-called definitions by abstraction. An example of this is Hume's Principle, which introduces the concept of number by stating that two concepts have the same number if and only if the objects falling under each one of them can be put in one-one correspondence. This principle is at the core (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Abstraction and Four Kinds of Invariance.Roy T. Cook - 2017 - Philosophia Mathematica 25 (1):3–25.
    Fine and Antonelli introduce two generalizations of permutation invariance — internal invariance and simple/double invariance respectively. After sketching reasons why a solution to the Bad Company problem might require that abstraction principles be invariant in one or both senses, I identify the most fine-grained abstraction principle that is invariant in each sense. Hume’s Principle is the most fine-grained abstraction principle invariant in both senses. I conclude by suggesting that this partially explains the success of Hume’s Principle, and the comparative lack (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Was Sind und was Sollen Die Zahlen?Richard Dedekind - 1888 - Cambridge University Press.
    This influential 1888 publication explained the real numbers, and their construction and properties, from first principles.
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • Plural Grundgesetze.Francesca Boccuni - 2010 - Studia Logica 96 (2):315-330.
    PG (Plural Grundgesetze) is a predicative monadic second-order system which exploits the notion of plural quantification and a few Fregean devices, among which a formulation of the infamous Basic Law V. It is shown that second-order Peano arithmetic can be derived in PG. I also investigate the philosophical issue of predicativism connected to PG. In particular, as predicativism about concepts seems rather un-Fregean, I analyse whether there is a way to make predicativism compatible with Frege’s logicism.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Frege: tradition & influence.Crispin Wright (ed.) - 1984 - New York, NY, USA: Blackwell.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (1 other version)Logische Syntax der Sprache.Rudolf Carnap - 1934 - Wien,: J. Springer.
    Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Natural logicism via the logic of orderly pairing.Neil Tennant - manuscript
    The aim here is to describe how to complete the constructive logicist program, in the author’s book Anti-Realism and Logic, of deriving all the Peano-Dedekind postulates for arithmetic within a theory of natural numbers that also accounts for their applicability in counting finite collections of objects. The axioms still to be derived are those for addition and multiplication. Frege did not derive them in a fully explicit, conceptually illuminating way. Nor has any neo-Fregean done so.
    Download  
     
    Export citation  
     
    Bookmark   13 citations