Switch to: Citations

References in:

Comparing the structures of mathematical objects

Synthese 199 (3-4):6357-6369 (2021)

Add references

You must login to add references.
  1. What Do Symmetries Tell Us About Structure?Thomas William Barrett - 2017 - Philosophy of Science (4):617-639.
    Mathematicians, physicists, and philosophers of physics often look to the symmetries of an object for insight into the structure and constitution of the object. My aim in this paper is to explain why this practice is successful. In order to do so, I present a collection of results that are closely related to (and in a sense, generalizations of) Beth’s and Svenonius’ theorems.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Equivalent and Inequivalent Formulations of Classical Mechanics.Thomas William Barrett - 2019 - British Journal for the Philosophy of Science 70 (4):1167-1199.
    In this article, I examine whether or not the Hamiltonian and Lagrangian formulations of classical mechanics are equivalent theories. I do so by applying a standard for equivalence that was recently introduced into philosophy of science by Halvorson and Weatherall. This case study yields three general philosophical payoffs. The first concerns what a theory is, while the second and third concern how we should interpret what our physical theories say about the world. 1Introduction 2When Are Two Theories Equivalent? 3Preliminaries on (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • (2 other versions)World enough and space‐time: Absolute versus relational theories of space and time.Robert Toretti & John Earman - 1989 - Philosophical Review 101 (3):723.
    Download  
     
    Export citation  
     
    Bookmark   316 citations  
  • Who's afraid of coordinate systems? An essay on representation of spacetime structure.David Wallace - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:125-136.
    Coordinate-based approaches to physical theories remain standard in mainstream physics but are largely eschewed in foundational discussion in favour of coordinate-free differential-geometric approaches. I defend the conceptual and mathematical legitimacy of the coordinate-based approach for foundational work. In doing so, I provide an account of the Kleinian conception of geometry as a theory of invariance under symmetry groups; I argue that this conception continues to play a very substantial role in contemporary mathematical physics and indeed that supposedly ``coordinate-free'' differential geometry (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Philosophy of Physics: Space and Time.Tim Maudlin - 2012 - Princeton University Press.
    This concise book introduces nonphysicists to the core philosophical issues surrounding the nature and structure of space and time, and is also an ideal resource for physicists interested in the conceptual foundations of space-time theory. Tim Maudlin's broad historical overview examines Aristotelian and Newtonian accounts of space and time, and traces how Galileo's conceptions of relativity and space-time led to Einstein's special and general theories of relativity. Maudlin explains special relativity using a geometrical approach, emphasizing intrinsic space-time structure rather than (...)
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Foundations of Space-Time Theories.Michael Friedman - 1987 - Noûs 21 (4):595-601.
    Download  
     
    Export citation  
     
    Bookmark   241 citations  
  • Newtonian Spacetime Structure in Light of the Equivalence Principle.Eleanor Knox - 2014 - British Journal for the Philosophy of Science 65 (4):863-880.
    I argue that the best spacetime setting for Newtonian gravitation (NG) is the curved spacetime setting associated with geometrized Newtonian gravitation (GNG). Appreciation of the ‘Newtonian equivalence principle’ leads us to conclude that the gravitational field in NG itself is a gauge quantity, and that the freely falling frames are naturally identified with inertial frames. In this context, the spacetime structure of NG is represented not by the flat neo-Newtonian connection usually made explicit in formulations, but by the sum of (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Are Newtonian Gravitation and Geometrized Newtonian Gravitation Theoretically Equivalent?James Owen Weatherall - 2016 - Erkenntnis 81 (5):1073-1091.
    I argue that a criterion of theoretical equivalence due to Glymour :227–251, 1977) does not capture an important sense in which two theories may be equivalent. I then motivate and state an alternative criterion that does capture the sense of equivalence I have in mind. The principal claim of the paper is that relative to this second criterion, the answer to the question posed in the title is “yes”, at least on one natural understanding of Newtonian gravitation.
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Spacetime structure.Thomas William Barrett - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 51:37-43.
    This paper makes an observation about the ``amount of structure'' that different classical and relativistic spacetimes posit. The observation substantiates a suggestion made by Earman and yields a cautionary remark concerning the scope and applicability of structural parsimony principles.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The Structure of the World: Metaphysics and Representation.Steven French - 2014 - New York: Oxford University Press.
    Steven French articulates and defends the bold claim that there are no objects in the world. He draws on metaphysics and philosophy of science to argue for structural realism--the position that we live in a world of structures--and defends a form of eliminativism about objects that sets laws and symmetry principles at the heart of ontology.
    Download  
     
    Export citation  
     
    Bookmark   224 citations  
  • The interpretation of gauge symmetry.Michael Redhead - 2002 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press. pp. 124--139.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • The Non-equivalence of Einstein and Lorentz.Clara Bradley - 2021 - British Journal for the Philosophy of Science 72 (4):1039-1059.
    In this article, I give a counterexample to a claim made in that empirically equivalent theories can often be regarded as theoretically equivalent by treating one as having surplus structure, thereby overcoming the problem of underdetermination of theory choice. The case I present is that of Lorentz's ether theory and Einstein's theory of special relativity. I argue that Norton's suggestion that surplus structure is present in Lorentz's theory in the form of the ether state of rest is based on a (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The ’Structure’ of Physics.Jill North - 2009 - Journal of Philosophy 106 (2):57–88.
    We are used to talking about the “structure” posited by a given theory of physics, such as the spacetime structure of relativity. What is “structure”? What does the mathematical structure used to formulate a theory tell us about the physical world according to the theory? What if there are different mathematical formulations of a given theory? Do different formulations posit different structures, or are they merely notational variants? I consider the case of Lagrangian and Hamiltonian classical mechanics. I argue that, (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • An Introduction to Nonstandard Real Analysis.Albert E. Hurd, Peter A. Loeb, K. D. Stroyan & W. A. J. Luxemburg - 1985 - Journal of Symbolic Logic 54 (2):631-633.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • On the Structure of Classical Mechanics.Thomas William Barrett - 2015 - British Journal for the Philosophy of Science 66 (4):801-828.
    The standard view is that the Lagrangian and Hamiltonian formulations of classical mechanics are theoretically equivalent. Jill North, however, argues that they are not. In particular, she argues that the state-space of Hamiltonian mechanics has less structure than the state-space of Lagrangian mechanics. I will isolate two arguments that North puts forward for this conclusion and argue that neither yet succeeds. 1 Introduction2 Hamiltonian State-space Has less Structure than Lagrangian State-space2.1 Lagrangian state-space is metrical2.2 Hamiltonian state-space is symplectic2.3 Metric > (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • On North's "The Structure of Physics".Noel Swanson & Hans Halvorson - 2012
    Jill North argues that Hamiltonian mechanics provides the most spare -- and hence most accurate -- account of the structure of a classical world. We point out some difficulties for her argument, and raise some general points about attempts to minimize structural commitments.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Space, time, and spacetime.L. Sklar - 1976 - Revue Philosophique de la France Et de l'Etranger 172 (3):545-555.
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • (1 other version)Category Theory.S. Awodey - 2007 - Bulletin of Symbolic Logic 13 (3):371-372.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Foundations of Space-Time Theories.Micheal Friedman - 1983 - Princeton University Press.
    Download  
     
    Export citation  
     
    Bookmark   252 citations  
  • Mathematics, Form and Function.Saunders MacLane - 1986 - Journal of Philosophy 84 (1):33-37.
    Download  
     
    Export citation  
     
    Bookmark   80 citations