Results for 'Helmet Detection, Number Plate Detection, ArtificialIntelligence, CNN, Deep Learning, YOLO V5 Algorithm'

982 found
Order:
  1.  41
    Helmet Detection with Number Plate Recognition System.SujithaT IswaryaG, PriyadarshaniS, SaranyaR S., Shri VardhiniM - 2023 - International Journal of Innovative Research in Computer and Communication Engineering 11 (5):3763-3770.
    Helmet violation detection is a crucial aspect ofroad safety, as it can significantly reduce the number of fatalities and injuries caused by motorcycle accidents. In recent years, computer vision techniques have been widely used to develop automated systems for helmet violation detection. This project proposes a helmet violation detection system using image processing and machine learning techniques. The proposed system employs computer vision algorithms to detect whether a motorcyclist is wearing a helmet or not. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2.  30
    Deep Learning-based Traffic Sign Detection and Recognition (TSDR).Vattem Srinath Shaik Nagul Meera - 2023 - International Journal of Multidisciplinary Research in Science, Engineering, Technology and Management 10 (11):13073-13076.
    Traffic sign detection and recognition (TSDR) is a critical aspect of autonomous driving and intelligent transportation systems. Traditional methods of traffic sign detection rely on handcrafted features and classical machine learning algorithms, which often struggle to achieve high accuracy in complex real-world environments. In contrast, deep learning techniques, particularly Convolutional Neural Networks (CNNs), have shown remarkable performance in both detecting and recognizing traffic signs in diverse conditions. This paper reviews the application of deep learning methods for TSDR, focusing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  61
    Estimating social distance in public places for COVID-19 protocol using region CNN.Sugumar R. - 2023 - Indonesian Journal of Electrical Engineering and Computer Science 30 (1):414-421.
    The coronavirus disease has spread throughout the world and its fear has made people to be more cautious in public places. Since precautionary measures are the only reliable protocol to defend ourselves, social distancing is the only best approach to defend against the pandemic situation. The reproduction number i.e. R0 factor of COVID-19, can be slowed down only through the physical distancing norms. This research proposes a deep learning approach for maintaining the social distance by tracking and detecting (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  4.  50
    Real Time Object Detection for Autonomous Driving.Manasa Madireddy Sai - 2024 - International Journal of Engineering Innovations and Management Strategies 1 (8):1-15.
    One key aspect in the design of autonomous vehicles is the implementation of real-time object detection which includes identifying and classifying obstacles present in the environment of the vehicle . The system will also be able to capture live or recorded videos and accurately identify and classify the objects within the video streams in very active situations requiring low turnaround times so that the vehicle is able to make the necessary safe driving critical choices . more recent state of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  14
    Plant Disease Detection and Proposing Solution Using Image Processing and Deep Learning with IOT.Pavan Vinayak Shetty Ganapathi Avabrath, Mohana Poojary - 2023 - International Journal of Innovative Research in Science, Engineering and Technology 12 (4):3608-3613.
    Farmers are often concerned about plant disease since it can greatly affect crop productivity and quality. Expert manual inspection is required in traditional techniques of identifying plant diseases, which can be time- and money-consuming. Deep learning algorithms have made automated plant disease detection systems more practical. Convolutional neural networks (CNNs) are used in our proposed deep learning- based technique for the diagnosis of plant diseases. The suggested system uses plant photos as input to determine the presence of illnesses (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  20
    Detection of Skin Cancer Using Deep Learning and Image Processing.Yashwanth Boudh G. Ms Shilpa Sannamani, Mushkan Mozaffar, Nithin Raj Aras, Nithyashree K. G. - 2024 - International Journal of Multidisciplinary Research in Science, Engineering and Technology 7 (1):4007-4013.
    This study explores the application of deep learning and image processing techniques for the detection of skin cancer. Leveraging convolutional neural networks (CNNs) and advanced image processing algorithms, the proposed system aims to accurately identify and classify skin lesions. The model is trained on a diverse dataset, encompassing various skin conditions, to enhance its diagnostic capabilities. Results demonstrate the potential for automated and reliable skin cancer detection, offering a promising approach for early diagnosis and improved patient outcomes. The (...) learning model is trained on a comprehensive dataset, including various types of skin lesions and conditions, to ensure robust performance across a spectrum of cases. Image preprocessing techniques are employed to enhance feature extraction and improve the model's ability to discern subtle patterns indicative of skin cancer. The study further investigates the interpretability of the deep learning model, employing techniques to visualize and understand the decision-making process. This transparency aids in building trust in the system's predictions and facilitates collaboration between AI and medical practitioners. As the landscape of healthcare continues to evolve, the combination of deep learning and image processing offers a scalable and efficient solution for skin cancer detection, fostering advancements in early intervention and personalized patient care. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  25
    Estimation of Social Distance for COVID19 Prevention using K-Nearest Neighbor Algorithm through deep learning.R. Sugumar - 2022 - IEEE 2 (2):1-6.
    Coronavirus disease has a crisis with high spread throughout the world during the COVID19 pandemic period. This disease can be easily spread to a group of people and increase the spread. Since it is a worldly disease and not plenty of vaccines available, social distancing is the only best approach to defend against the pandemic situation. All the affected countries' governments declared locked-down to implement social distancing. This social separation and persons not being in a mass group can slow down (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  8.  77
    An investigation into the performances of the Current state-of-the-art Naive Bayes, Non-Bayesian and Deep Learning Based Classifier for Phishing Detection: A Survey. [REVIEW]Tosin Ige - manuscript
    Phishing is one of the most effective ways in which cybercriminals get sensitive details such as credentials for online banking, digital wallets, state secrets, and many more from potential victims. They do this by spamming users with malicious URLs with the sole purpose of tricking them into divulging sensitive information which is later used for various cybercrimes. In this research, we did a comprehensive review of current state-of-the-art machine learning and deep learning phishing detection techniques to expose their vulnerabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Classification of Sign-Language Using MobileNet - Deep Learning.Tanseem N. Abu-Jamie & Samy S. Abu-Naser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (7):29-40.
    Abstract: Sign language recognition is one of the most rapidly expanding fields of study today. Many new technologies have been developed in recent years in the fields of artificial intelligence the sign language-based communication is valuable to not only deaf and dumb community, but also beneficial for individuals suffering from Autism, downs Syndrome, Apraxia of Speech for correspondence. The biggest problem faced by people with hearing disabilities is the people's lack of understanding of their requirements. In this paper we try (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  10. Classification of Sign-Language Using Deep Learning - A Comparison between Inception and Xception models.Tanseem N. Abu-Jamie & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (8):9-19.
    there is a communication gap between hearing-impaired people and those with normal hearing, sign language is the main means of communication in the hearing-impaired population. Continuous sign language recognition, which can close the communication gap, is a difficult task since the ordered annotations are weakly supervised and there is no frame-level label. To solve this issue, we compare the accuracy of each model using two deep learning models, Inception and Xception . To that end, the purpose of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  11. Sarcasm Detection in Headline News using Machine and Deep Learning Algorithms.Alaa Barhoom, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2022 - International Journal of Engineering and Information Systems (IJEAIS) 6 (4):66-73.
    Abstract: Sarcasm is commonly used in news and detecting sarcasm in headline news is challenging for humans and thus for computers. The media regularly seem to engage sarcasm in their news headline to get the attention of people. However, people find it tough to detect the sarcasm in the headline news, hence receiving a mistaken idea about that specific news and additionally spreading it to their friends, colleagues, etc. Consequently, an intelligent system that is able to distinguish between can sarcasm (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  12.  19
    Vehicle Surveillance System using Deep Learning.Mr Sachin D. Shelke Savani Kalekar, Mohammad Saif Ansari, Pratik Pradhan, Aditya Wadkar - 2024 - International Journal of Innovative Research in Science, Engineering and Technology 13 (1):122-127.
    The increase in number of vehicles on the road is being observed day by day, and the responsibilities that should be upheld by vehicle owners are frequently neglected. To ensure that the rules defined by the RTO are adhered to by every vehicle owner, the "Vehicle Surveillance System using deep learning" is proposed. This system is designed to capture vehicle data through web-app, with the identification of vehicles being achieved through the recognition of their number plates, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  49
    A Deep Learning Framework for COVID-19 Detection in X-Ray Images with Global Thresholding.R. Sugumar - 2023 - IEEE 1 (2):1-6.
    The COVID-19 outbreak has had a significant influence on the health of people all across the world, and preventing its further spread requires an early and correct diagnosis. Imaging using X-rays is often used to identify respiratory disorders like COVID-19, and approaches based on machine learning may be used to automate the diagnostic process. In this research, we present a deep learning approach for COVID-19 identification in X-ray pictures utilizing global thresholding. Our framework consists of two main components: (1) (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  14.  57
    Intelligent Malware Detection Empowered by Deep Learning for Cybersecurity Enhancement.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):625-635.
    With the proliferation of sophisticated cyber threats, traditional malware detection techniques are becoming inadequate to ensure robust cybersecurity. This study explores the integration of deep learning (DL) techniques into malware detection systems to enhance their accuracy, scalability, and adaptability. By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and hybrid malware datasets, followed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Using Deep Learning to Detect the Quality of Lemons.Mohammed B. Karaja & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):97-104.
    Abstract: Lemons are an important fruit that have a wide range of uses and benefits, from culinary to health to household and beauty applications. Deep learning techniques have shown promising results in image classification tasks, including fruit quality detection. In this paper, we propose a convolutional neural network (CNN)-based approach for detecting the quality of lemons by analysing visual features such as colour and texture. The study aims to develop and train a deep learning model to classify lemons (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. Deep Learning - Driven Data Leakage Detection for Secure Cloud Computing.Yoheswari S. - 2025 - International Journal of Engineering Innovations and Management Strategies 1 (1):1-4.
    Cloud computing has revolutionized the storage and management of data by offering scalable, cost-effective, and flexible solutions. However, it also introduces significant security concerns, particularly related to data leakage, where sensitive information is exposed to unauthorized entities. Data leakage can result in substantial financial losses, reputational damage, and legal complications. This paper proposes a deep learning-based framework for detecting data leakage in cloud environments. By leveraging advanced neural network architectures, such as Long Short-Term Memory (LSTM) and Convolutional Neural Networks (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17.  67
    Deep Learning - Driven Data Leakage Detection for Secure Cloud Computing.Yoheswari S. - 2024 - International Journal of Engineering Innovations and Management Strategies 5 (1):1-4.
    Cloud computing has revolutionized the storage and management of data by offering scalable, cost-effective, and flexible solutions. However, it also introduces significant security concerns, particularly related to data leakage, where sensitive information is exposed to unauthorized entities. Data leakage can result in substantial financial losses, reputational damage, and legal complications. This paper proposes a deep learning-based framework for detecting data leakage in cloud environments. By leveraging advanced neural network architectures, such as Long Short- Term Memory (LSTM) and Convolutional Neural (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Detection of Brain Tumor Using Deep Learning.Hamza Rafiq Almadhoun & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (3):29-47.
    Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines or software that work and reacts like humans, some of the computer activities with artificial intelligence are designed to include speech, recognition, learning, planning and problem solving. Deep learning is a collection of algorithms used in machine learning, it is part of a broad family of methods used for machine learning that are based on learning representations of data. Deep learning is used (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  19.  70
    Advanced Deep Learning Models for Proactive Malware Detection in Cybersecurity Systems.A. Manoj Prabharan - 2023 - Journal of Science Technology and Research (JSTAR) 5 (1):666-676.
    By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and hybrid malware datasets, followed by training DL models to classify malicious and benign software with high precision. A robust experimental setup evaluates the framework using benchmark malware datasets, yielding a 96% detection accuracy and demonstrating resilience against adversarial attacks. Real-time analysis capabilities further improve (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Deep learning and synthetic media.Raphaël Millière - 2022 - Synthese 200 (3):1-27.
    Deep learning algorithms are rapidly changing the way in which audiovisual media can be produced. Synthetic audiovisual media generated with deep learning—often subsumed colloquially under the label “deepfakes”—have a number of impressive characteristics; they are increasingly trivial to produce, and can be indistinguishable from real sounds and images recorded with a sensor. Much attention has been dedicated to ethical concerns raised by this technological development. Here, I focus instead on a set of issues related to the notion (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  21.  81
    Automated Plant Disease Detection through Deep Learning for Enhanced Agricultural Productivity.M. Sheik Dawood - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):640-650.
    he health of plants plays a crucial role in ensuring agricultural productivity and food security. Early detection of plant diseases can significantly reduce crop losses, leading to improved yields. This paper presents a novel approach for plant disease recognition using deep learning techniques. The proposed system automates the process of disease detection by analyzing leaf images, which are widely recognized as reliable indicators of plant health. By leveraging convolutional neural networks (CNNs), the model identifies various plant diseases with high (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22.  62
    Facial Recognition with Supervised Learning.BabySrinithi S. Muthulakshmi M. - 2024 - International Journal of Innovative Research in Computer and Communication Engineering 12 (11):12794-12799.
    Facial recognition is a computer vision task that involves identifying or verifying individuals based on their facial features. It has widespread applications in security, authentication, and human-computer interaction. Supervised learning techniques have become the foundation for facial recognition systems, as they enable the model to learn from labeled data to recognize patterns and make predictions. This paper explores the use of supervised learning algorithms, such as Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and k-Nearest Neighbors (k-NN), for facial recognition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23.  16
    Facial Emotional Recognition Using Deep Convolutional Neural Networks.Mohammed Danish Hussain Hemish Veeraboina, Surapur Sai Teja, Y. Sai Sameer, Mavuluri Vamsi Krishna Reddy - 2021 - International Journal of Innovative Research in Science, Engineering and Technology 10 (9):12338-12356.
    A face reveals a lot of information about a person's identity, age, sex, race, and emotional as well as psychological state. Facial expressions are often used in the behavioral interpretation of emotions and play a key role in social interactions. Due to its potential applications such as HCI, behavioral science, automatic facial emotion detection is one of the most intriguing and challenging areas in computer vision. Our Facial Emotion Recognition system performs detection and location of faces in a cluttered scene, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24.  28
    The Evolution of Deep Learning: A Performance Analysis of CNNs in Image Recognition.Mittal Mohit - 2016 - International Journal of Advanced Research in Education and Technology(Ijarety) 3 (6):2029-2038.
    Computer vision, or image recognition, analyses and interprets visual data in real-world scenarios like images and videos. AI and ML research focusses on object, scene, action, and feature identification because of its usefulness in image processing. Neural networks and deep learning have improved image recognition systems significantly in recent years. Early image recognition used template matching to identify objects. A photo is compared to a stored template using similarity measures like correlation to get the best match. There are several (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25.  98
    A Novel Deep Learning-Based Framework for Intelligent Malware Detection in Cybersecurity.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):666-669.
    With the proliferation of sophisticated cyber threats, traditional malware detection techniques are becoming inadequate to ensure robust cybersecurity. This study explores the integration of deep learning (DL) techniques into malware detection systems to enhance their accuracy, scalability, and adaptability. By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and hybrid malware datasets, followed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Prediction of Heart Disease Using a Collection of Machine and Deep Learning Algorithms.Ali M. A. Barhoom, Abdelbaset Almasri, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2022 - International Journal of Engineering and Information Systems (IJEAIS) 6 (4):1-13.
    Abstract: Heart diseases are increasing daily at a rapid rate and it is alarming and vital to predict heart diseases early. The diagnosis of heart diseases is a challenging task i.e. it must be done accurately and proficiently. The aim of this study is to determine which patient is more likely to have heart disease based on a number of medical features. We organized a heart disease prediction model to identify whether the person is likely to be diagnosed with (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  27. Automatic Face Mask Detection Using Python.M. Madan Mohan - 2021 - Journal of Science Technology and Research (JSTAR) 2 (1):91-100.
    The corona virus COVID-19 pandemic is causing a global health crisis so the effective protection methods is wearing a face mask in public areas according to the World Health Organization (WHO). The COVID-19 pandemic forced governments across the world to impose lockdowns to prevent virus transmissions. Reports indicate that wearing facemasks while at work clearly reduces the risk of transmission. An efficient and economic approach of using AI to create a safe environment in a manufacturing setup. A hybrid model using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28.  75
    Agricultural Innovation: Automated Detection of Plant Diseases through Deep Learning.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):630-640.
    The health of plants plays a crucial role in ensuring agricultural productivity and food security. Early detection of plant diseases can significantly reduce crop losses, leading to improved yields. This paper presents a novel approach for plant disease recognition using deep learning techniques. The proposed system automates the process of disease detection by analyzing leaf images, which are widely recognized as reliable indicators of plant health. By leveraging convolutional neural networks (CNNs), the model identifies various plant diseases with high (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29.  68
    Enhanced convolutional neural network enabled optimized diagnostic model for COVID-19 detection (13th edition).Rajendran Sugumar - 2024 - Bulletin of Electrical Engineering and Informatics 13 (3):1935-1942.
    Computed tomography (CT) films are used to construct cross-sectional pictures of a particular region of the body by using many x-ray readings that were obtained at various angles. There is a general agreement in the medical community at this time that chest CT is the most accurate approach for identifying COVID-19 disease. It was demonstrated that chest CT had a higher sensitivity than reverse transcription polymerase chain reaction (RT-PCR) for the detection of COVID-19 illness. This article presents gray-level co-occurrence matrix (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Diagnosis of Pneumonia Using Deep Learning.Alaa M. A. Barhoom & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (2):48-68.
    Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines or software that work and react like humans. Some of the activities computers with artificial intelligence are designed for include, Speech, recognition, Learning, Planning and Problem solving. Deep learning is a collection of algorithms used in machine learning, It is part of a broad family of methods used for machine learning that are based on learning representations of data. Deep learning is a (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  31. Lemon Classification Using Deep Learning.Jawad Yousif AlZamily & Samy Salim Abu Naser - 2020 - International Journal of Academic Pedagogical Research (IJAPR) 3 (12):16-20.
    Abstract : Background: Vegetable agriculture is very important to human continued existence and remains a key driver of many economies worldwide, especially in underdeveloped and developing economies. Objectives: There is an increasing demand for food and cash crops, due to the increasing in world population and the challenges enforced by climate modifications, there is an urgent need to increase plant production while reducing costs. Methods: In this paper, Lemon classification approach is presented with a dataset that contains approximately 2,000 images (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  32.  93
    Empowering Cybersecurity with Intelligent Malware Detection Using Deep Learning Techniques.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):655-665.
    With the proliferation of sophisticated cyber threats, traditional malware detection techniques are becoming inadequate to ensure robust cybersecurity. This study explores the integration of deep learning (DL) techniques into malware detection systems to enhance their accuracy, scalability, and adaptability. By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and hybrid malware datasets, followed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33.  58
    Speech Emotion Detection_ System using Machine Learning (12th edition).Asma Shaikh Neev Mhatre, - 2024 - International Journal of Innovative Research in Computer and Communication Engineering 12 (11):12789-12793. Translated by Neev Mhatre.
    Speech Emotion Detection (SED) refers to the identification of human emotions based on speech signals. The goal of this research is to design and implement a system that can accurately classify emotions from speech using machine learning techniques. The system can be applied in various fields such as healthcare, customer service, human-computer interaction, and mental health monitoring. The paper discusses the various stages of building such a system, from collecting and preprocessing audio data to selecting machine learning models and evaluating (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. IoT Based Intruder Prevention using Fogger.T. Krishna Prasath - 2021 - Journal of Science Technology and Research (JSTAR) 2 (1):81-90.
    Anamoly detection in videos plays an important role in various real-life applications. Most of traditional approaches depend on utilizing handcrafted features which are problem-dependent and optimal for specific tasks. Nowadays, there has been a rise in the amount of disruptive and offensive activities that have been happening. Due to this, security has been given principal significance. Public places like shopping centers, avenues, banks, etc. are increasingly being equipped with CCTVs to guarantee the security of individuals. Subsequently, this inconvenience is making (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Cantaloupe Classifications using Deep Learning.Basel El-Habil & Samy S. Abu-Naser - 2021 - International Journal of Academic Engineering Research (IJAER) 5 (12):7-17.
    Abstract cantaloupe and honeydew melons are part of the muskmelon family, which originated in the Middle East. When picking either cantaloupe or honeydew melons to eat, you should choose a firm fruit that is heavy for its size, with no obvious signs of bruising. They can be stored at room temperature until you cut them, after which they should be kept in the refrigerator in an airtight container for up to five days. You should always wash and scrub the rind (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  36. Classification of Real and Fake Human Faces Using Deep Learning.Fatima Maher Salman & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (3):1-14.
    Artificial intelligence (AI), deep learning, machine learning and neural networks represent extremely exciting and powerful machine learning-based techniques used to solve many real-world problems. Artificial intelligence is the branch of computer sciences that emphasizes the development of intelligent machines, thinking and working like humans. For example, recognition, problem-solving, learning, visual perception, decision-making and planning. Deep learning is a subset of machine learning in artificial intelligence that has networks capable of learning unsupervised from data that is unstructured or unlabeled. (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  37. A DEEP LEARNING APPROACH FOR LSTM BASED COVID-19 FORECASTING SYSTEM.K. Jothimani - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):28-38.
    : COVID-19 has proliferated over the earth, exposing mankind at risk. The assets of the world's most powerful economies are at stake due to the disease's high infectivity and contagiousness. The capacity of machine learning algorithms can estimate the amount of future COVID-19 cases, which is now considered a possible threat to civilization. Five conventional measuring models, notably LR, LASSO, SVM, ES, and LSTM, were utilised in this work to examine COVID-19's undermining variables. Each model contains three sorts of expectations: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38.  87
    Exploiting the In-Distribution Embedding Space with Deep Learning and Bayesian inference for Detection and Classification of an Out-of-Distribution Malware (Extended Abstract).Tosin Ige - forthcoming - Aaai Conference.
    Current state-of-the-art out-of-distribution algorithm does not address the variation in dynamic and static behavior between malware variants from the same family as evidence in their poor performance against an out-of-distribution malware attack. We aims to address this limitation by: 1) exploitation of the in-dimensional embedding space between variants from the same malware family to account for all variations 2) exploitation of the inter-dimensional space between different malware family 3) building a deep learning-based model with a shallow neural network (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Type of Tomato Classification Using Deep Learning.Mahmoud A. Alajrami & Samy S. Abu-Naser - 2020 - International Journal of Academic Pedagogical Research (IJAPR) 3 (12):21-25.
    Abstract: Tomatoes are part of the major crops in food security. Tomatoes are plants grown in temperate and hot regions of South American origin from Peru, and then spread to most countries of the world. Tomatoes contain a lot of vitamin C and mineral salts, and are recommended for people with constipation, diabetes and patients with heart and body diseases. Studies and scientific studies have proven the importance of eating tomato juice in reducing the activity of platelets in diabetics, which (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  40. Crime Prediction Using Machine Learning and Deep Learning.S. Venkatesh - 2024 - Journal of Science Technology and Research (JSTAR) 6 (1):1-13.
    Crime prediction has emerged as a critical application of machine learning (ML) and deep learning (DL) techniques, aimed at assisting law enforcement agencies in reducing criminal activities and improving public safety. This project focuses on developing a robust crime prediction system that leverages the power of both ML and DL algorithms to analyze historical crime data and predict potential future incidents. By integrating a combination of classification and clustering techniques, our system identifies crime-prone areas, trends, and patterns. Key parameters (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Recurrent Neural Network Based Speech emotion detection using Deep Learning.P. Pavithra - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):65-77.
    In modern days, person-computer communication systems have gradually penetrated our lives. One of the crucial technologies in person-computer communication systems, Speech Emotion Recognition (SER) technology, permits machines to correctly recognize emotions and greater understand users' intent and human-computer interlinkage. The main objective of the SER is to improve the human-machine interface. It is also used to observe a person's psychological condition by lie detectors. Automatic Speech Emotion Recognition(SER) is vital in the person-computer interface, but SER has challenges for accurate recognition. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Exploiting the In-Distribution Embedding Space with Deep Learning and Bayesian inference for Detection and Classification of an Out-of-Distribution Malware (Extended Abstract).Tosin ige, Christopher Kiekintveld & Aritran Piplai - forthcoming - Aaai Conferenece Proceeding.
    Current state-of-the-art out-of-distribution algorithm does not address the variation in dynamic and static behavior between malware variants from the same family as evidence in their poor performance against an out-of-distribution malware attack. We aims to address this limitation by: 1) exploitation of the in-dimensional embedding space between variants from the same malware family to account for all variations 2) exploitation of the inter-dimensional space between different malware family 3) building a deep learning-based model with a shallow neural network (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43.  42
    Deep Learning for Wildlife: Eagle-Fish Recognition at Scale.Akram Muhammad - 2023 - Journal of Science Technology and Research (JSTAR) 4 (1):2023.
    Advancements in technology, particularly in the field of artificial intelligence (AI), have opened new avenues for solving complex biological and ecological challenges. Among these, deep learning has emerged as a powerful tool for image-based classification tasks. Convolutional Neural Networks (CNNs), a subset of deep learning algorithms, are especially effective in recognizing patterns and extracting features from images. This capability makes CNNs highly suitable for applications in bird species identification. By leveraging deep learning techniques, researchers and conservationists can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Diagnosis of Blood Cells Using Deep Learning.Ahmed J. Khalil & Samy S. Abu-Naser - 2022 - Dissertation, University of Tehran
    In computer science, Artificial Intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and other animals. Computer science defines AI research as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals. Deep Learning is a new field of research. One of the branches of Artificial Intelligence Science deals with the creation of theories and algorithms (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  45. Revolutionizing Agriculture with Deep Learning-Based Plant Health Monitoring.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):655-666.
    By leveraging convolutional neural networks (CNNs), the model identifies various plant diseases with high accuracy. The experimental setup includes a dataset consisting of healthy and diseased leaf images of different plant species. The dataset is preprocessed to remove noise and augmented to address the issue of class imbalance. The CNN model is then trained, validated, and tested on this dataset. The results indicate that the deep learning model achieves a classification accuracy of over 95% for most plant diseases. Additionally, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Classification of Sign-Language Using Deep Learning by ResNet.Tanseem N. Abu-Jamie & Samy S. Abu-Naser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (8):25-34.
    American Sign Language, or ASL as its acronym is commonly known, is a fascinating language, and many people outside of the Deaf community have begun to recognize its value and purpose. It is a visual language consisting of coordinated hand gestures, body movements, and facial expressions. Sign language is not a universal language; it varies by country and is heavily influenced by the native language and culture. The American Sign Language alphabet and the British Sign Language alphabet are completely contrary. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  47.  31
    Plant Health and Disease Detection Using Yolo.D. Ramana Kumar - 2025 - International Journal of Engineering Innovations and Management Strategies 1 (1):1-8.
    Plant health monitoring is crucial for sustainable agriculture, as early detection of diseases can prevent significant crop losses. This study presents a deep learning-based approach using the YOLO (You Only Look Once) model for real-time plant disease detection. The model is trained on a curated dataset of diseased and healthy plant leaves, enabling accurate classification and identification of plant conditions. The methodology involves image preprocessing, feature extraction, and YOLO inference for detection. A webbased interface is developed using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  50
    Leveraging the Power of Deep Learning to Overcome the Challenges of Marine Engineering and Improve Vessel Operations.A. Akshith Reddy - 2024 - International Journal of Engineering Innovations and Management Strategies 1 (5):1-14.
    Maritime transport plays a pivotal role in global trade, yet it faces challenges due to corrosion, which deteriorates metallic surfaces of vessels, leading to potential safety hazards and financial burdens. Traditional corrosion detection methods such as visual inspections are inefficient, time-consuming, and often subjective. This paper proposes a deep learning-based solution utilizing Convolutional Neural Networks (CNNs) to detect and assess corrosion on marine vessel surfaces. Our proposed solution not only automates the detection process but also enhances accuracy, ensuring early (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Attack Prevention in IoT through Hybrid Optimization Mechanism and Deep Learning Framework.Regonda Nagaraju, Jupeth Pentang, Shokhjakhon Abdufattokhov, Ricardo Fernando CosioBorda, N. Mageswari & G. Uganya - 2022 - Measurement: Sensors 24:100431.
    The Internet of Things (IoT) connects schemes, programs, data management, and operations, and as they continuously assist in the corporation, they may be a fresh entryway for cyber-attacks. Presently, illegal downloading and virus attacks pose significant threats to IoT security. These risks may acquire confidential material, causing reputational and financial harm. In this paper hybrid optimization mechanism and deep learning,a frame is used to detect the attack prevention in IoT. To develop a cybersecurity warning system in a huge (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  50.  50
    AI and Machine Learning Simplify Nutritional Analysis: A Deep Learning-Based Approach to Calorie Estimation.A. Manoj Prabaharan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):1-13.
    his project aims to provide an automated system for accurately estimating the calorie content of food and beverages using advanced deep learning algorithms. With the increasing demand for health-conscious individuals, there is a need for a reliable, efficient, and easy-to-use tool that can help users make informed dietary choices. The project utilizes image processing techniques and deep learning models, such as Convolutional Neural Networks (CNN), to analyze food images and predict the corresponding calorie content. The system works by (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 982