Results for 'Lawvere'

14 found
Order:
  1. Métodos axiomáticos: a interpretação matemática de Lawvere da lógica de Hegel.Nicholas Corrêa - 2020 - Ágora Filosófica 20 (3):206-239.
    O pensamento axiomático de Hilbert foi um influente modelo filosófico que motivou movimentos como o positivismo no início do século XX, em diversas áreas dentro, e fora, da filosofia, como a epistemologia e a metamatemática. O formalismo axiomático fornece, através do uso da lógica de primeira ordem, uma importante fundação para modelos lógicos formais, o que, para Hilbert, representaria um modelo universal de investigação empírica, não só para a matemática, mas para todas as ciências naturais, e pela visão positivista, também (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. À Maneira de Um Colar de Pérolas?André Porto - 2017 - Revista Portuguesa de Filosofia 73 (3-4):1381-1404.
    This paper offers an overview of various alternative formulations for Analysis, the theory of Integral and Differential Calculus, and its diverging conceptions of the topological structure of the continuum. We pay particularly attention to Smooth Analysis, a proposal created by William Lawvere and Anders Kock based on Grothendieck’s work on a categorical algebraic geometry. The role of Heyting’s logic, common to all these alternatives is emphasized.
    Download  
     
    Export citation  
     
    Bookmark  
  3. Science of Knowing: Mathematics.Venkata Rayudu Posina - manuscript
    The 'Science of Knowing: Mathematics' textbook is the first book to put forward and substantiate the thesis that the mathematical understanding of mathematics, as exemplified in F. William Lawvere's Functorial Semantics, constitutes the science of knowing i.e. cognitive science. -/- This is a textbook, i.e. teaching material.
    Download  
     
    Export citation  
     
    Bookmark  
  4. Categorical Cybernetics: A Framework for Computational Dialectics.Eric Schmid - manuscript
    At the intersection of category theory, cybernetics, and dialectical reasoning lies a profound framework for understanding computation and control. This paper examines how categorical structures—particularly adjoint functors and fixed points—illuminate the nature of feedback and control in both mathematical and philosophical contexts. Through an analysis of Lawvere’s fixed point theorem, Bayesian Open Games, and modern approaches to categorical cybernetics, we develop a unified perspective that bridges computation, control, and dialectical reasoning. We demonstrate the practical implications of this theoretical framework (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Homotopy Type Theory and Structuralism.Teruji Thomas - 2014 - Dissertation, University of Oxford
    I explore the possibility of a structuralist interpretation of homotopy type theory (HoTT) as a foundation for mathematics. There are two main aspects to HoTT's structuralist credentials. First, it builds on categorical set theory (CST), of which the best-known variant is Lawvere's ETCS. I argue that CST has merit as a structuralist foundation, in that it ascribes only structural properties to typical mathematical objects. However, I also argue that this success depends on the adoption of a strict typing system (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. CORCORAN'S 27 ENTRIES IN THE 1999 SECOND EDITION.John Corcoran - 1995 - In Robert Audi, The Cambridge Dictionary of Philosophy. New York City: Cambridge University Press. pp. 65-941.
    Corcoran’s 27 entries in the 1999 second edition of Robert Audi’s Cambridge Dictionary of Philosophy [Cambridge: Cambridge UP]. -/- ancestral, axiomatic method, borderline case, categoricity, Church (Alonzo), conditional, convention T, converse (outer and inner), corresponding conditional, degenerate case, domain, De Morgan, ellipsis, laws of thought, limiting case, logical form, logical subject, material adequacy, mathematical analysis, omega, proof by recursion, recursive function theory, scheme, scope, Tarski (Alfred), tautology, universe of discourse. -/- The entire work is available online free at more than (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. subregular tetrahedra.John Corcoran - 2008 - Bulletin of Symbolic Logic 14 (3):411-2.
    This largely expository lecture deals with aspects of traditional solid geometry suitable for applications in logic courses. Polygons are plane or two-dimensional; the simplest are triangles. Polyhedra [or polyhedrons] are solid or three-dimensional; the simplest are tetrahedra [or triangular pyramids, made of four triangles]. -/- A regular polygon has equal sides and equal angles. A polyhedron having congruent faces and congruent [polyhedral] angles is not called regular, as some might expect; rather they are said to be subregular—a word coined for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  58
    Laws of Change of Concepts: I. Space of Concepts.Venkata Rayudu Posina - manuscript
    Motivated by the urgency of making explicit "the laws of possible rational passage from one concept to another", which Professor F. William Lawvere brought into figural salience for all to see, here we begin to characterize the space of all mathematical concepts (whose kinship with ordinary concepts was highlighted by none other than Einstein) which determines all possible rational passages between concepts.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Diagonal arguments and fixed points.Saeed Salehi - 2017 - Bulletin of the Iranian Mathematical Society 43 (5):1073-1088.
    ‎A universal schema for diagonalization was popularized by N. S‎. ‎Yanofsky (2003)‎, ‎based on a pioneering work of F.W‎. ‎Lawvere (1969)‎, ‎in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function‎. ‎It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema‎. ‎Here‎, ‎we fit more theorems in the universal‎ ‎schema of diagonalization‎, ‎such as Euclid's proof for the infinitude of the primes and new (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. A Sketch of a Sirenia: Meros Theory.Dan Kurth - manuscript
    This sketch of a perhaps future 'Elementary Theory of the Category of Mereological Sums (including Mereological Wholes and Parts)' relates to my previous papers "The Topos of Emergence" and "Intelligible Gunk". I assert that for successfully categorizing Mereology one has to start with a specific setting of gunk. In this paper we will give a sketch of a categorically version of particular mereological structures. I.e. we will follow the example of F.W.Lawvere’s “An elementary theory of the category of sets” (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. In Education We Trust.Venkata Rayudu Posina - manuscript
    Beginning with an examination of the deep history of making things and thinking about making things made-up in our minds, I argue that the resultant declarative understanding of the procedural knowledge of abstracting theories and building models—the essence(s) of the practice of science—embodied in Conceptual Mathematics is worth learning beginning with high school, along with grammar and calculus. One of the many profound scientific insights introduced—in a manner accessible to total beginners—in Lawvere and Schanuel's Conceptual Mathematics textbook is: the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Mathematics for Cognitive Science.Venkata Rayudu Posina - manuscript
    That the state-of-affairs of cognitive science is not good is brought into figural salience in "What happened to cognitive science?" (Núñez et al., 2019). We extend their objective description of 'what's wrong' to a prescription of 'how to correct'. Cognitive science, in its quest to elucidate 'how we know', embraces a long list of subjects, while ignoring Mathematics (Fig. 1a, Núñez et al., 2019). Mathematics is known for making the unknown to be known (cf. solving for unknowns). This acknowledgement naturally (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Functorial Semantics for the Advancement of the Science of Cognition.Venkata Posina, Dhanjoo N. Ghista & Sisir Roy - 2017 - Mind and Matter 15 (2):161-184.
    Cognition involves physical stimulation, neural coding, mental conception, and conscious perception. Beyond the neural coding of physical stimuli, it is not clear how exactly these component processes constitute cognition. Within mathematical sciences, category theory provides tools such as category, functor, and adjointness, which are indispensable in the explication of the mathematical calculations involved in acquiring mathematical knowledge. More speci cally, functorial semantics, in showing that theories and models can be construed as categories and functors, respectively, and in establishing the adjointness (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  14. Functorial Semantics for the Advancement of the Science of Cognition.Posina Venkata Rayudu, Dhanjoo N. Ghista & Sisir Roy - 2017 - Mind and Matter 15 (2):161–184.
    Our manuscript addresses the foundational question of cognitive science: how do we know? Specifically, examination of the mathematics of acquiring mathematical knowledge revealed that knowing-within-mathematics is reflective of knowing-in-general. Based on the correspondence between ordinary cognition (involving physical stimuli, neural sensations, mental concepts, and conscious percepts) and mathematical knowing (involving objective particulars, measured properties, abstract theories, and concrete models), we put forward the functorial semantics of mathematical knowing as a formalization of cognition. Our investigation of the similarity between mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark