We are developing the Neurological Disease Ontology (ND) to provide a framework to enable representation of aspects of neurological diseases that are relevant to their treatment and study. ND is a representational tool that addresses the need for unambiguous annotation, storage, and retrieval of data associated with the treatment and study of neurological diseases. ND is being developed in compliance with the Open Biomedical Ontology Foundry principles and builds upon the paradigm established by the Ontology for General Medical Science (OGMS) (...) for the representation of entities in the domain of disease and medical practice. Initial applications of ND will include the annotation and analysis of large data sets and patient records for Alzheimer’s disease, multiple sclerosis, and stroke. (shrink)
Biological ontologies are used to organize, curate, and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple ontologies can be problematic, as they are developed independently, which can lead to incompatibilities. The Open Biological and Biomedical Ontologies Foundry was created to address this by facilitating the development, harmonization, application, and sharing of ontologies, guided by a set of overarching principles. One challenge in reaching these goals was that the (...) OBO principles were not originally encoded in a precise fashion, and interpretation was subjective. Here we show how we have addressed this by formally encoding the OBO principles as operational rules and implementing a suite of automated validation checks and a dashboard for objectively evaluating each ontology’s compliance with each principle. This entailed a substantial effort to curate metadata across all ontologies and to coordinate with individual stakeholders. We have applied these checks across the full OBO suite of ontologies, revealing areas where individual ontologies require changes to conform to our principles. Our work demonstrates how a sizable federated community can be organized and evaluated on objective criteria that help improve overall quality and interoperability, which is vital for the sustenance of the OBO project and towards the overall goals of making data FAIR. Competing Interest StatementThe authors have declared no competing interest. (shrink)
We have begun work on two separate but related ontologies for the study of neurological diseases. The first, the Neurological Disease Ontology (ND), is intended to provide a set of controlled, logically connected classes to describe the range of neurological diseases and their associated signs and symptoms, assessments, diagnoses, and interventions that are encountered in the course of clinical practice. ND is built as an extension of the Ontology for General Medical Sciences — a high-level candidate OBO Foundry ontology that (...) provides a set of general classes that can be used to describe general aspects of medical science. ND is being built with classes utilizing both textual and axiomatized definitions that describe and formalize the relations between instances of other classes within the ontology itself as well as to external ontologies such as the Gene Ontology, Cell Ontology, Protein Ontology, and Chemical Entities of Biological Interest. In addition, references to similar or associated terms in external ontologies, vocabularies and terminologies are included when possible. Initial work on ND is focused on the areas of Alzheimer’s and other diseases associated with dementia, multiple sclerosis, and stroke and cerebrovascular disease. Extensions to additional groups of neurological diseases are planned. The second ontology, the Neuro-Psychological Testing Ontology (NPT), is intended to provide a set of classes for the annotation of neuropsychological testing data. The intention of this ontology is to allow for the integration of results from a variety of neuropsychological tests that assay similar measures of cognitive functioning. Neuro-psychological testing is an important component in developing the clinical picture used in the diagnosis of patients with a range of neurological diseases, such as Alzheimer’s disease and multiple sclerosis, and following stroke or traumatic brain injury. NPT is being developed as an extension to the Ontology for Biomedical Investigations. (shrink)
Monoclonal antibodies are essential biomedical research and clinical reagents that are produced by companies and research laboratories. The NIAID ImmPort (Immunology Database and Analysis Portal) resource provides a long-term, sustainable data warehouse for immunological data generated by NIAID, DAIT and DMID funded investigators for data archiving and re-use. A variety of immunological data is generated using techniques that rely upon monoclonal antibody reagents, including flow cytometry, immunofluorescence, and ELISA. In order to facilitate querying, integration, and reuse of data, standardized terminology (...) for describing monoclonal antibody reagents and their targets needs to be used for annotating data submitted to ImmPort. (shrink)
Maintaining systems of military plans is critical for military effectiveness, but is also challenging. Plans will become obsolete as the world diverges from the assumptions on which they rest. If too many ad hoc changes are made to intermeshed plans, the ensemble may no longer lead to well-synchronized and coordinated operations, resulting in the system of plans becoming itself incoherent. We describe in what follows an Adaptive Planning process that we are developing on behalf of the Air Force Research Laboratory (...) (Rome) with the goal of addressing problems of these sorts through cyclical collaborative plan review and maintenance. The interactions of world state, blue force status and associated plans are too complex for manual adaptive processes, and computer-aided plan review and maintenance is thus indispensable. We argue that appropriate semantic technology can 1) provide richer representation of plan-related data and semantics, 2) allow for flexible, non-disruptive, agile, scalable, and coordinated changes in plans, and 3) support more intelligent analytical querying of plan-related data. (shrink)
The Protein Ontology (PRO; http://purl.obolibrary.org/obo/pr) formally defines and describes taxon-specific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and protein-containing complexes. PRO thus serves as a tool for referencing protein entities at any level of specificity. To enhance this ability, and to facilitate the comparison of such entities described in different resources, we developed a standardized representation of proteoforms using UniProtKB as a sequence reference and PSI-MOD as a post-translational modification (...) reference. We illustrate its use in facilitating an alignment between PRO and Reactome protein entities. We also address issues of scalability, describing our first steps into the use of text mining to identify protein-related entities, the large-scale import of proteoform information from expert curated resources, and our ability to dynamically generate PRO terms. Web views for individual terms are now more informative about closely-related terms, including for example an interactive multiple sequence alignment. Finally, we describe recent improvement in semantic utility, with PRO now represented in OWL and as a SPARQL endpoint. These developments will further support the anticipated growth of PRO and facilitate discoverability of and allow aggregation of data relating to protein entities. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.