Results for 'Quantum mechanics in a gravitational field'

924 found
Order:
  1. Dirac-Type Equations in a Gravitational Field, with Vector Wave Function.Mayeul Arminjon - 2008 - Foundations of Physics 38 (11):1020-1045.
    An analysis of the classical-quantum correspondence shows that it needs to identify a preferred class of coordinate systems, which defines a torsionless connection. One such class is that of the locally-geodesic systems, corresponding to the Levi-Civita connection. Another class, thus another connection, emerges if a preferred reference frame is available. From the classical Hamiltonian that rules geodesic motion, the correspondence yields two distinct Klein-Gordon equations and two distinct Dirac-type equations in a general metric, depending on the connection used. Each (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of quantum (...) proposes that all quantum systems be interpreted as dissipative ones and that the theorem be thus derstood. The conclusion is that the continual representation, by force or (gravitational) field between parts interacting by means of it, of a system is equivalent to their mutual entanglement if representation is discrete. Gravity (force field) and entanglement are two different, correspondingly continual and discrete, images of a single common essence. General relativity can be interpreted as a superluminal generalization of special relativity. The postulate exists of an alleged obligatory difference between a model and reality in science and philosophy. It can also be deduced by interpreting a corollary of the heorem. On the other hand, quantum mechanics, on the basis of this theorem and of V on Neumann's (1932), introduces the option that a model be entirely identified as the modeled reality and, therefore, that absolutely reality be recognized: this is a non-standard hypothesis in the epistemology of science. Thus, the true reality begins to be understood mathematically, i.e. in a Pythagorean manner, for its identification with its mathematical model. A few linked problems are highlighted: the role of the axiom of choice forcorrectly interpreting the theorem; whether the theorem can be considered an axiom; whether the theorem can be considered equivalent to the negation of the axiom. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  3. Quantum mechanics foundations.Bakytzhan Oralbekov - manuscript
    Gravity remains the most elusive field. Its relationship with the electromagnetic field is poorly understood. Relativity and quantum mechanics describe the aforementioned fields, respectively. Bosons and fermions are often credited with responsibility for the interactions of force and matter. It is shown here that fermions factually determine the gravitational structure of the universe, while bosons are responsible for the three established and described forces. Underlying the relationships of the gravitational and electromagnetic fields is a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  5. Quantum Gravity in a Laboratory?Nick Huggett, Niels S. Linnemann & Mike D. Schneider - 2023
    It has long been thought that observing distinctive traces of quantum gravity in a laboratory setting is effectively impossible, since gravity is so much weaker than all the other familiar forces in particle physics. But the quantum gravity phenomenology community today seeks to do the (effectively) impossible, using a challenging novel class of `tabletop' Gravitationally Induced Entanglement (GIE) experiments, surveyed here. The hypothesized outcomes of the GIE experiments are claimed by some (but disputed by others) to provide a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Quantum Mechanics, Fields, Black Holes, and Ontological Plurality.Gustavo E. Romero - 2024 - Philosophies 9 (4):97-121.
    The ontology behind quantum mechanics has been the subject of endless debate since the theory was formulated some 100 years ago. It has been suggested, at one time or another, that the objects described by the theory may be individual particles, waves, fields, ensembles of particles, observers, and minds, among many other possibilities. I maintain that these disagreements are due in part to a lack of precision in the use of the theory’s various semantic designators. In particular, there (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - manuscript
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  8. A Semi-Classical Model of the Elementary Process Theory Corresponding to Non-Relativistic Classical Mechanics.Marcoen J. T. F. Cabbolet - 2022 - In And now for something completely different: the Elementary Process Theory. Revised, updated and extended 2nd edition of the dissertation with almost the same title. Utrecht: Eburon Academic Publishers. pp. 255-287.
    Currently there are at least four sizeable projects going on to establish the gravitational acceleration of massive antiparticles on earth. While general relativity and modern quantum theories strictly forbid any repulsive gravity, it has not yet been established experimentally that gravity is attraction only. With that in mind, the Elementary Process Theory (EPT) is a rather abstract theory that has been developed from the hypothesis that massive antiparticles are repulsed by the gravitational field of a body (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Reasonable Inferences From Quantum Mechanics: A Response to “Quantum Misuse in Psychic Literature”.Bernardo Kastrup - 2019 - Journal of Near-Death Studies 37 (3):185-200.
    This invited article is a response to the paper “Quantum Misuse in Psychic Literature,” by Jack A. Mroczkowski and Alexis P. Malozemoff, published in this issue of the Journal of Near-Death Studies. Whereas I sympathize with Mroczkowski’s and Malozemoff’s cause and goals, and I recognize the problem they attempted to tackle, I argue that their criticisms often overshot the mark and end up adding to the confusion. I address nine specific technical points that Mroczkowski and Malozemoff accused popular writers (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. (1 other version)Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12).
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  11. Edge Modes and Dressing Fields for the Newton–Cartan Quantum Hall Effect.William J. Wolf, James Read & Nicholas J. Teh - 2022 - Foundations of Physics 53 (1):1-24.
    It is now well-known that Newton–Cartan theory is the correct geometrical setting for modelling the quantum Hall effect. In addition, in recent years edge modes for the Newton–Cartan quantum Hall effect have been derived. However, the existence of these edge modes has, as of yet, been derived using only orthodox methodologies involving the breaking of gauge-invariance; it would be preferable to derive the existence of such edge modes in a gauge-invariant manner. In this article, we employ recent work (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  12. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  14. Quantity in Quantum Mechanics and the Quantity of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (47):1-10.
    The paper interprets the concept “operator in the separable complex Hilbert space” (particalry, “Hermitian operator” as “quantity” is defined in the “classical” quantum mechanics) by that of “quantum information”. As far as wave function is the characteristic function of the probability (density) distribution for all possible values of a certain quantity to be measured, the definition of quantity in quantum mechanics means any unitary change of the probability (density) distribution. It can be represented as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement is available. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Compatibilism in Quantum Mechanics: A New Perspective on Free Will and Determinism.Kaden McCullough - manuscript
    This paper presents a novel argument for compatibilism, the view that free will and determinism are compatible. Drawing on principles from quantum mechanics, specifically the Heisenberg uncertainty principle and the concept of superposition, the paper proposes an analogy between the behavior of particles at the quantum level and the choices made by free agents. It argues that just as particles exist in a field of possibilities until observed, actions exist in a field of possibilities until (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Barad, Bohr, and quantum mechanics.Jan Faye & Rasmus Jaksland - 2021 - Synthese 199:8231-8255.
    The last decade has seen an increasing number of references to quantum mechanics in the humanities and social sciences. This development has in particular been driven by Karen Barad’s agential realism: a theoretical framework that, based on Niels Bohr’s interpretation of quantum mechanics, aims to inform social theorizing. In dealing with notions such as agency, power, and embodiment as well as the relation between the material and the discursive level, the influence of agential realism in fields (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  19. Two deductions: (1) from the totality to quantum information conservation; (2) from the latter to dark matter and dark energy.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (28):1-47.
    The paper discusses the origin of dark matter and dark energy from the concepts of time and the totality in the final analysis. Though both seem to be rather philosophical, nonetheless they are postulated axiomatically and interpreted physically, and the corresponding philosophical transcendentalism serves heuristically. The exposition of the article means to outline the “forest for the trees”, however, in an absolutely rigorous mathematical way, which to be explicated in detail in a future paper. The “two deductions” are two successive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  50
    Alternative concept on space used in the BSM – Supergravitational Unified Theory unveils the connection between the micro-cosmos and Universe.Stoyan Sarg Sargoytchev - unknown
    The theory is based on an original alternative space-time concept that leads to a new vision of the micro-cosmos and Universe. The relationship between the forces in Nature is unveiled by adopting the following framework: (1) Empty space without any physical properties and restrictions; (2) Two fundamental particles of superdense protomatter with parameters associated with Planck’s scale; (3) A Fundamental law of Supergravitation (SG) with forces inversely proportional to the cube of distance in a pure empty space. An enormous abundance (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Reverse Quantum Mechanics: Ontological Path.Michele Caponigro - manuscript
    This paper is essentially a quantum philosophical challenge: starting from simple assumptions, we argue about an ontological approach to quantum mechanics. In this paper, we will focus only on the assumptions. While these assumptions seems to solve the ontological aspect of theory many others epistemological problems arise. For these reasons, in order to prove these assumptions, we need to find a consistent mathematical context (i.e. time reverse problem, quantum entanglement, implications on quantum fields, Schr¨odinger cat (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Field equations, quantum mechanics and geotropism.Han J. F. Geurdes - manuscript
    The biochemistry of geotropism in plants and gravisensing in e.g. cyanobacteria or paramacia is still not well understood today [1]. Perhaps there are more ways than one for organisms to sense gravity. The two best known relatively old explanations for gravity sensing are sensing through the redistribution of cellular starch statoliths and sensing through redistribution of auxin. The starch containing statoliths in a gravity field produce pressure on the endoplasmic reticulum of the cell. This enables the cell to sense (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. A single-world consistent interpretation of quantum mechanics from fundamental time and length uncertainties.Rodolfo Gambini, Luis Pedro Garcia-Pintos & Jorge Pullin - 2018 - Physical Review A 100 (012).
    Within ordinary ---unitary--- quantum mechanics there exist global protocols that allow to verify that no definite event ---an outcome to which a probability can be associated--- occurs. Instead, states that start in a coherent superposition over possible outcomes always remain as a superposition. We show that, when taking into account fundamental errors in measuring length and time intervals, that have been put forward as a consequence of a conjunction of quantum mechanical and general relativity arguments, there are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  26. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Unification of Science - Einstein's Missing Steps in E=mc2 and His Missing Link to Quantum Gravity.Rodney Bartlett - 2018 - Beau Bassin, Mauritius: Lambert Academic Publishing.
    A Monograph Dealing With Unification In Relation To Dark Energy, Dark Matter, Cosmic Expansion, E=mc2, Quantum Gravity, "Imaginary" Computers, Creation Of The Infinite And Eternal Universe Using Electronic BITS + PI + "Imaginary" Time, Earthly Education, Science-Religion Union, The Human Condition, Superconductivity, Planetary Fields, How Gravitation Can Boost Health, Space-Time Propulsion From The Emdrive To The Brouwer Fixed-Point Theorem, "Light Matter", Etc. These Effects Were Originally Discussed In Several Short Internet Articles. Table Of Contents Introduction Superconductivity And Planetary Magnetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. A New Argument for the Nomological Interpretation of the Wave Function: The Galilean Group and the Classical Limit of Nonrelativistic Quantum Mechanics.Valia Allori - 2017 - International Studies in the Philosophy of Science (2):177-188.
    In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as a ray, in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  30. Subjective Evolution of Consciousness in Modern Science and Vedāntic Philosophy: Particulate Concept to Quantum Mechanics in Modern Science and Śūnyavāda to Acintya-Bhedābheda-Tattva in Vedānta.PhD Ph D. Shanta - 2019 - In Siddheshwar Rameshwar Bhatt (ed.), Quantum Reality and Theory of Śūnya. Springer.
    How the universe came to be what it is now is a key philosophical question. The hypothesis that it came from nothing or śūnya (as proposed by Stephen Hawking, among others) proves to be dissembling, since the quantum vacuum can hardly be considered a void (śūnya). In modern science, it is generally assumed that matter existed before the universe came to be. Modern science hypothesizes that the manifestation of life on earth is nothing but a mere increment in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Wave detected by LIGO is not gravitational wave.Alfonso Leon Guillen Gomez - manuscript
    General Relativity defines gravity like the metric of a Lorentzian manifold. Einstein formulated spacetime as quality structural of gravity, i.e, circular definition between gravity and spacetime, also Einstein denoted "Space and time are modes by which we think, not conditions under which we live" and “We denote everything but the gravitational field as matter”, therefore, spacetime is nothing and gravity in first approximation an effect of coordinates, and definitely a geometric effect. The mathematical model generates quantitative predictions coincident (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Relation between relativisitic quantum mechanics and.Han Geurdes - 1995 - Phys Rev E 51 (5):5151-5154.
    The objective of this report is twofold. In the first place it aims to demonstrate that a four-dimensional local U(1) gauge invariant relativistic quantum mechanical Dirac-type equation is derivable from the equations for the classical electromagnetic field. In the second place, the transformational consequences of this local U(1) invariance are used to obtain solutions of different Maxwell equations.
    Download  
     
    Export citation  
     
    Bookmark  
  33. SUPER SCIENCE: Insightful Intuitions of the Future's Super-science, as Different from Today's Science as That is From Superstition and Myth.Rodney Bartlett - manuscript
    Look! Up in the bookshelf! Is it science? Is it science-fiction? No, it's Super Science: strange visitor from the future who can be everywhere in the universe and everywhen in time, can change the world in a single bound and who - disguised as a mild mannered author - fights for truth, justice and the super-scientific way. -/- Though I put a lot of hard work into this book, I can't take all the credit. I believe that the whole universe (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Selective Realism and the Framework/Interaction Distinction: A Taxonomy of Fundamental Physical Theories.Federico Benitez - 2019 - Foundations of Physics 49 (7):700-716.
    Following the proposal of a new kind of selective structural realism that uses as a basis the distinction between framework and interaction theories, this work discusses relevant applications in fundamental physics. An ontology for the different entities and properties of well-known theories is thus consistently built. The case of classical field theories—including general relativity as a classical theory of gravitation—is examined in detail, as well as the implications of the classification scheme for issues of realism in quantum (...). These applications also shed light on the different range of applicability of the ontic and epistemic versions of structural realism. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  35. A New Foundation for Physics.Jim Bourassa & David Thomson - 2006 - Infinite Energy Magazine (69):34.
    Modern physics describes the mechanics of the Universe. We have discovered a new foundation for physics, which explains the components of the Universe with precision and depth. We quantify the existence of Aether, subatomic particles, and the force laws. Some aspects of the theory derive from the Standard Model, but much is unique. A key discovery from this new foundation is a mathematically correct Unified Force Theory. Other fundamental discoveries follow, including the origin of the fine structure constant and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. (1 other version) “Fuzzy time”, from paradox to paradox (Does it solve the contradiction between Quantum Mechanics & General Relativity?).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Book Review: The World in the Wave Function - The Metaphysics of Quantum Physics by A. Ney. [REVIEW]Daihyun Chung - 2023 - CHEOLHAK, Korean Philosophical Association 156:211-224.
    (English translation from the text in Korean) -/- The assertion that both humanity and the external world share a fundamental unity has gained increasing recognition, particularly in light of the growing discourse surrounding quantum physics. This perspective draws parallels with conceptual frameworks found in Western idealism, Eastern Buddhism, and the philosophy of Zhuangzi. In examining the current state of scientific inquiry, one cannot overlook the profound impact of quantum mechanics on the field of physics, alongside the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Space-Time Intervals Underlie Human Conscious Experience, Gravity, and a Theory of Everything.Richard Sieb - 2018 - Neuroquantology 16 (7):49-64.
    Space-time intervals are the fundamental components of conscious experience, gravity, and a Theory of Everything. Space-time intervals are relationships that arise naturally between events. They have a general covariance (independence of coordinate systems, scale invariance), a physical constancy, that encompasses all frames of reference. There are three basic types of space-time intervals (light-like, time-like, space-like) which interact to create space-time and its properties. Human conscious experience is a four-dimensional space-time continuum created through the processing of space-time intervals by the brain; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  44
    The Unimaginable Telescope of Year 4001.Rodney Bartlett - manuscript
    The year in the title comes from “2001: A Space Odyssey”. The article was inspired by reading about the Vera C. Rubin Telescope, due to begin operations in Chile next year. The article I read talked about the telescope photographing the entire Southern Hemisphere sky but the heading spoke of watching the whole universe. Reconciling the Southern Hemisphere with the entire cosmos quickly became the challenge I chose to accept. The Unimaginable Telescope uses multi-messenger (combined neutrino / gravitational / (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Meaning of the wave function.Shan Gao - 2010
    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  41. Quantum Field Theory: An Introduction.Ryan Reece - manuscript
    This document is a set of notes I took on QFT as a graduate student at the University of Pennsylvania, mainly inspired in lectures by Burt Ovrut, but also working through Peskin and Schroeder (1995), as well as David Tong’s lecture notes available online. They take a slow pedagogical approach to introducing classical field theory, Noether’s theorem, the principles of quantum mechanics, scattering theory, and culminating in the derivation of Feynman diagrams.
    Download  
     
    Export citation  
     
    Bookmark  
  42. Ontological Investigations in the Quantum Domain: A deflationary approach on ontology of physics.Lauro de Matos Nunes Filho - 2020 - Dissertation, Federal University of Santa Catarina
    The aim of this thesis is to propose a deflationary approach towards the ontological analysis of physical theories. Such an approach sustains that the development of ontologies for physical theories must be neutral relatively to the debate between realists and anti-realists in philosophy of physics. Mainly, our attention will be oriented towards what we called "quantum domain", which includes the non-relativistic Quantum Mechanics and variants of the Quantum Field Theory. This meta-ontological approach consists in an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. A Quantum-Theoretic Argument Against Naturalism.Bruce L. Gordon - 2011 - In Bruce Gordon & William A. Dembski (eds.), The nature of nature: examining the role of naturalism in science. Wilmington, DE: ISI Books. pp. 179-214.
    Quantum theory offers mathematical descriptions of measurable phenomena with great facility and accuracy, but it provides absolutely no understanding of why any particular quantum outcome is observed. It is the province of genuine explanations to tell us how things actually work—that is, why such descriptions hold and why such predictions are true. Quantum theory is long on the what, both mathematically and observationally, but almost completely silent on the how and the why. What is even more interesting (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  44. And now for something completely different: the Elementary Process Theory. Revised, updated and extended 2nd edition of the dissertation with almost the same title.Marcoen J. T. F. Cabbolet - 2022 - Utrecht: Eburon Academic Publishers.
    On the one hand, theories of modern physics are very successful in their areas of application. But on the other hand, the irreconcilability of General Relativity (GR) and Quantum Electrodynamics (QED) suggests that these theories of modern physics are not the final answer regarding the fundamental workings of the universe. This monograph takes the position that the key to advances in the foundations of physics lies in the hypothesis that massive systems made up of antimatter are repulsed by the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. (1 other version)The correspondence principle in quantum field theory and quantum gravity.Damiano Anselmi - manuscript
    We discuss the fate of the correspondence principle beyond quantum mechanics, specifically in quantum field theory and quantum gravity, in connection with the intrinsic limitations of the human ability to observe the external world. We conclude that the best correspondence principle is made of unitarity, locality, proper renormalizability (a refinement of strict renormalizability), combined with fundamental local symmetries and the requirement of having a finite number of fields. Quantum gravity is identified in an essentially (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Why the de Broglie-Bohm theory is probably wrong.Shan Gao - manuscript
    We investigate the validity of the field explanation of the wave function by analyzing the mass and charge density distributions of a quantum system. It is argued that a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. This is also a consequence of protective measurement. If the wave function is a physical field, then the mass and charge density will be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47.  81
    Quantum theology, or: “Theologie als strenge Wissenschaft”.Vasil Penchev - 2024 - Metaphilosophy eJournal (Elsevier: SSRN) 16 (15):1-66.
    The main idea consists in researching the existence of certain characteristics of nature similar to human reasonability and purposeful actions, originating and rigorously inferable from the postulates of quantum mechanics as well as from those of special and general relativity. The pathway of the “free-will theorems” proved by Conway and Kochen in 2006 and 2009 is followed and pioneered further. Those natural reasonability and teleology are identified as a special subject called “God” and studyable by “quantum theology”, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Negative-Energy Matter and the Direction of Time.J. C. Lindner - forthcoming
    This report offers a modern perspective on the problem of negative energy, based on a reexamination of the concept of time direction as it arises in a classical and quantum-mechanical context. From this analysis emerges an improved understanding of the general-relativistic stress-energy of matter as being a manifestation of local variations in the energy density of zero-point vacuum fluctuations. Based on those developments, a set of axioms is proposed from which are derived generalized gravitational field equations which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Transaction and Non Locality in Quantum Field Theory.Ignazio Licata - forthcoming - Europ. Phys. J.
    The most part of the debates on Quantum Mechanics (QM) interpretation come out from the remains of a classical language based upon waves and particles. Such problems can find a decisive clarification in Quantum Field Theory (QFT), where the concept of “classical object” is replaced by an interaction networks. On the other hand, it is simpler to discuss about non-locality in QM than in QFT. We propose here the concept of transaction as a connection between theQM (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 924