Results for 'Relational quantum mechanics, Monism, Structural Realism, Coherentism'

1000+ found
Order:
  1. what ontology for relational quantum mechanics?Mauro Dorato & Matteo Morganti - 2022
    In this paper, we evaluate some proposals that can be advanced to clarify the ontological consequences of Relational Quantum Mechanics. We first focus on priority monism and ontic structural realism and argue that these views are not suitable for providing an ontological interpretation of the theory. Then, we discuss an alternative interpretation that we regard as more promising, based on so-called ‘metaphysical coherentism’, which we also connect to the idea of an event-based, or ‘flash’, ontology.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Quantum Entanglement Undermines Structural Realism.Seungbae Park - 2022 - Metaphysica 23 (1):1-13.
    Quantum entanglement poses a challenge to the traditional metaphysical view that an extrinsic property of an object is determined by its intrinsic properties. So structural realists might be tempted to cite quantum entanglement as evidence for structural realism. I argue, however, that quantum entanglement undermines structural realism. If we classify two entangled electrons as a single system, we can say that their spin properties are intrinsic properties of the system, and that we can have (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Dispositions, relational properties and the quantum world.Mauro Dorato - 2017 - In Maximilien Kistler (ed.), Dispositions and Causal Powers, Routledge, 2017,. London: Routledge. pp. pp.249-270..
    In this paper I examine the role of dispositional properties in the most frequently discussed interpretations of non-relativistic quantum mechanics. After offering some motivation for this project, I briefly characterize the distinction between non-dispositional and dispositional properties in the context of quantum mechanics by suggesting a necessary condition for dispositionality – namely contextuality – and, consequently, a sufficient condition for non-dispositionality, namely non-contextuality. Having made sure that the distinction is conceptually sound, I then analyze the plausibility of the (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  4. On the Preferability of Epistemic Structural Realism.Matteo Morganti - 2004 - Synthese 142 (1):81-107.
    In the last decade, structural realism has been presented as the most promising strategy for developing a defensible realist view of science. Nevertheless, controversy still continues in relation to the exact meaning of the proposed structuralism. The stronger version of structural realism, the so-called ontic structural realism, has been argued for on the basis of some ideas related to quantum mechanics. In this paper, I will first outline these arguments, mainly developed by Steven French and James (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  5. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time according (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  6. The quantum mechanical path integral: Toward a realistic interpretation.Mark Sharlow - 2007
    In this paper, I explore the feasibility of a realistic interpretation of the quantum mechanical path integral - that is, an interpretation according to which the particle actually follows the paths that contribute to the integral. I argue that an interpretation of this sort requires spacetime to have a branching structure similar to the structures of the branching spacetimes proposed by previous authors. I point out one possible way to construct branching spacetimes of the required sort, and I ask (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7. Quantum Mechanics, Metaphysics, and Bohm's Implicate Order.George Williams - 2019 - Mind and Matter 2 (17):155-186.
    The persistent interpretation problem for quantum mechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene on material (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  95
    RELATIONAL REALISM AND THE ONTOGENETIC UNIVERSE: subject, object, and ontological process in quantum mechanics.Michael Epperson - 2020 - Angelaki 25 (3):108-119.
    Amid the wide variety of interpretations of quantum mechanics, the notion of a fully coherent ontological interpretation has seen a promising evolution over the last few decades. Despite this progress, however, the old dualistic categorical constraints of subjectivity and objectivity, correlate with the metrically restricted definition of local and global, have remained largely in place – a reflection of the broader, persistent inheritance of these comfortable strictures throughout the evolution of modern science. If one traces this inheritance back to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  74
    Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Matteo Morganti & Claudio Calosi - 2021 - British Journal for the Philosophy of Science 72 (3):865-891.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  10. Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Claudio Calosi & Matteo Morganti - 2018 - British Journal for the Philosophy of Science:axy064.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  11. Contextual quantum realism and other interpretations of quantum mechanics.Francois-Igor Pris - 2023 - Moscow: Lenand.
    It is proposed a critique of existing interpretations of quantum mechanics, both anti-realistic and realistic, and, in particular, the Copenhagen interpretation, the interpretations with hidden variables, the metaphysical interpretation of H. Everett’s interpretation, the many-worlds interpretation by D. Wallace, QBism by C. Fuchs, D. Mermin and R. Schack, the relational interpretation by C. Rovelli, neo-Kantian and phenomenological interpretations by M. Bitbol, the informational interpretation by A. Zeilinger, the Nobel Prize Winner in Physics 2022, and others. As is known (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - manuscript
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Le réalisme structural face au problème de la mesure.Quentin Ruyant - 2016 - Lato Sensu: Revue de la Société de Philosophie des Sciences 3 (1):43-51.
    Le réalisme structural est une tentative d’établir un compromis entre le réalisme scientifique et l’empirisme, en restreignant le réalisme à la structure relationnelle des théories scientifiques. Il se décline en deux versions, épistémique et ontique. Le réalisme structural ontique propose de concevoir les relations nomologiques décrites par les théories comme des éléments primitifs de la réalité. Il est motivé, notamment, par le fait que sous sa forme épistémique, le réalisme structural ne se distingue pas réellement d’une position (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Structuralist approaches to Bohmian mechanics.Lorenzo Lorenzetti - 2022 - Synthese 200 (1):1-15.
    Lam and Esfeld have argued that, within Bohmian mechanics, the wave function can be interpreted as a physical structure instantiated by the fundamental particles posited by the theory. Further, to characterize the nature of this structure, they appeal to the framework of Ontic Structural Realism, thereby proposing a structuralist interpretation of Bohmian mechanics. However, I shall point out that OSR denotes a family of distinct views, each of which maintains a different account about the relation between structures and objects, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Feyerabend's Reevaluation of Scientific Practice: Quantum Mechanics, Realism and Niels Bohr.Daniel Kuby - 2021 - In Karim Bschir & Jamie Shaw (eds.), Interpreting Feyerabend: Critical Essays. New York, NY: Cambridge University Press. pp. 132-156.
    The aim of this paper is to give an account of the change in Feyerabend's philosophy that made him abandon methodological monism and embrace methodological pluralism. In this paper I offer an explanation in terms of a simple model of 'change of belief through evidence'. My main claim is that the evidence triggering this belief revision can be identified in Feyerabend's technical work in the interpretation of quantum mechanics, in particular his reevaluation of Bohr's contribution to it. This highlights (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. The Indeterminist Objectivity of Quantum Mechanics Versus the Determinist Subjectivity of Classical Physics.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (18):1-5.
    Indeterminism of quantum mechanics is considered as an immediate corollary from the theorems about absence of hidden variables in it, and first of all, the Kochen – Specker theorem. The base postulate of quantum mechanics formulated by Niels Bohr that it studies the system of an investigated microscopic quantum entity and the macroscopic apparatus described by the smooth equations of classical mechanics by the readings of the latter implies as a necessary condition of quantum mechanics the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Barad, Bohr, and quantum mechanics.Jan Faye & Rasmus Jaksland - 2021 - Synthese 199:8231-8255.
    The last decade has seen an increasing number of references to quantum mechanics in the humanities and social sciences. This development has in particular been driven by Karen Barad’s agential realism: a theoretical framework that, based on Niels Bohr’s interpretation of quantum mechanics, aims to inform social theorizing. In dealing with notions such as agency, power, and embodiment as well as the relation between the material and the discursive level, the influence of agential realism in fields such as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  18. Effective Ontic Structural Realism.James Ladyman & Lorenzo Lorenzetti - forthcoming - British Journal for the Philosophy of Science.
    Three accounts of effective realism (ER) have been advanced to solve three problems for scientific realism: Fraser and Vickers (forthcoming) develop a version of ER about non-relativistic quantum mechanics that they argue is compatible with all the main realist versions (‘interpretations’) of quantum mechanics avoiding the problem of underdetermination among them; Williams (2019) and Fraser (2020b) propose ER about quantum field theory as a response to the problems facing realist interpretations; Robertson and Wilson (forthcoming) propose ER to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. On the Received Realist View of Quantum Mechanics.Nahuel Sznajderhaus - 2016 - Cadernos de História E Filosofia da Ciéncia.
    In this article I defend that an underlying framework exists among those interpretations of quantum mechanics which crucially consider the measurement problem as a central obstacle. I characterise that framework as the Received View on the realist interpretation of quantum mechanics. In particular, I analyse the extent to which two of the most relevant attempts at quantum mechanics, namely, many worlds interpretations and Bohmian mechanics, belong within the Received View. However, I claim that scientific realism in itself (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. The Powers of Quantum Mechanics: A Metametaphysical Discussion of the “Logos Approach”.Raoni Wohnrath Arroyo & Jonas R. Becker Arenhart - 2023 - Foundations of Science 28 (3):885-910.
    This paper presents and critically discusses the “logos approach to quantum mechanics” from the point of view of the current debates concerning the relation between metaphysics and science. Due to its alleged direct connection with quantum formalism, the logos approach presents itself as a better alternative for understanding quantum mechanics than other available views. However, we present metaphysical and methodological difficulties that seem to clearly point to a different conclusion: the logos approach is on an epistemic equal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. On contextual "democratization" of the Copenhagen interpretation of quantum mechanics.Francois-Igor Pris - 2020 - In Второй Международный Конгресс Русского общества истории и философии науки. «Наука как общественное благо.» Том 1. Сборник статей. / ред.: И. Т. Касавин, Л. В. Шиповалова. – Москва: Издательство РОИФН,. Moscow, Russia: pp. 128-131.
    Download  
     
    Export citation  
     
    Bookmark  
  22. Axiomatic foundations of Quantum Mechanics revisited: the case for systems.S. E. Perez-Bergliaffa, Gustavo E. Romero & H. Vucetich - 1996 - International Journal of Theoretical Phyisics 35:1805-1819.
    We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  23. Discussions on physics, metaphysics and metametaphysics: Interpreting quantum mechanics.Raoni Wohnrath Arroyo - 2020 - Dissertation, Federal University of Santa Catarina
    This thesis inquires what it means to interpret non-relativistic quantum mechanics (QM), and the philosophical limits of this interpretation. In pursuit of a scientific-realist stance, a metametaphysical method is expanded and applied to evaluate rival interpretations of QM, based on the conceptual distinction between ontology and metaphysics, for objective theory choice in metaphysical discussions relating to QM. Three cases are examined, in which this metametaphysical method succeeds in indicating what are the wrong alternatives to interpret QM in metaphysical terms. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24.  89
    A Commentary on Robin Hendry’s Views on Molecular Structure, Emergence and Chemical Bonding.Eric Scerri - 2023 - In João L. Cordovil, Gil Santos & Davide Vecchi (eds.), New Mechanism Explanation, Emergence and Reduction. Springer. pp. 161 - 177.
    In this article I examine several related views expressed by Robin Hendry concerning molecular structure, emergence and chemical bonding. There is a long-standing problem in the philosophy of chemistry arising from the fact that molecular structure cannot be strictly derived from quantum mechanics. Two or more compounds which share a molecular formula, but which differ with respect to their structures, have identical Hamiltonian operators within the quantum mechanical formalism. As a consequence, the properties of all such isomers yield (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Quantum mechanics foundations.Bakytzhan Oralbekov - manuscript
    Gravity remains the most elusive field. Its relationship with the electromagnetic field is poorly understood. Relativity and quantum mechanics describe the aforementioned fields, respectively. Bosons and fermions are often credited with responsibility for the interactions of force and matter. It is shown here that fermions factually determine the gravitational structure of the universe, while bosons are responsible for the three established and described forces. Underlying the relationships of the gravitational and electromagnetic fields is a symmetrical probability distribution of fermions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Fundamentality and Levels in Everettian Quantum Mechanics.Alastair Wilson - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer.
    Distinctions in fundamentality between different levels of description are central to the viability of contemporary decoherence-based Everettian quantum mechanics (EQM). This approach to quantum theory characteristically combines a determinate fundamental reality (one universal wave function) with an indeterminate emergent reality (multiple decoherent worlds). In this chapter I explore how the Everettian appeal to fundamentality and emergence can be understood within existing metaphysical frameworks, identify grounding and concept fundamentality as promising theoretical tools, and use them to characterize a system (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  29. The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Bohm's approach and individuality.Paavo Pylkkänen, Basil Hiley & Ilkka Pättiniemi - 2016 - In Alexandre Guay & Thomas Pradeu (eds.), Individuals Across the Sciences. Oxford, UK: Oxford University Press.
    Ladyman and Ross argue that quantum objects are not individuals and use this idea to ground their metaphysical view, ontic structural realism, according to which relational structures are primary to things. LR acknowledge that there is a version of quantum theory, namely the Bohm theory, according to which particles do have denite trajectories at all times. However, LR interpret the research by Brown et al. as implying that "raw stuff" or haecceities are needed for the individuality (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  31. Retention Myths vs. Well-Managed Resources: Promises and Failings of Structural Realism (2014).Jean-Michel Delhotel - 2014
    Turning away from entities and focusing instead exclusively on ‘structural’ aspects of scientific theories has been advocated as a cogent response to objections levelled at realist conceptions of the aim and success of science. Physical theories whose (predictive) past successes are genuine would, in particular, share with their successors structural traits that would ultimately latch on to ‘structural’ features of the natural world. Motives for subscribing to Structural Realism are reviewed and discussed. It is argued that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics.Valia Allori - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  33. Pan(proto)psychism and the Relative-State Interpretation of Quantum Mechanics.Yu Feng - manuscript
    This paper connects the hard problem of consciousness to the interpretation of quantum mechanics. It shows that constitutive Russellian pan(proto)psychism (CRP) is compatible with Everett’s relative-state (RS) interpretation. Despite targeting different problems, CRP and RS are related, for they both establish symmetry between micro- and macrosystems, and both call for a deflationary account of Subject. The paper starts from formal arguments that demonstrate the incompatibility of CRP with alternative interpretations of quantum mechanics, followed by showing that RS entails (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  35. Mechanizmy predykcyjne i ich normatywność [Predictive mechanisms and their normativity].Michał Piekarski - 2020 - Warszawa, Polska: Liberi Libri.
    The aim of this study is to justify the belief that there are biological normative mechanisms that fulfill non-trivial causal roles in the explanations (as formulated by researchers) of actions and behaviors present in specific systems. One example of such mechanisms is the predictive mechanisms described and explained by predictive processing (hereinafter PP), which (1) guide actions and (2) shape causal transitions between states that have specific content and fulfillment conditions (e.g. mental states). Therefore, I am guided by a specific (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Discrete space and the underlying reality of Quantum Mechanics.Sydney Ernest Grimm - manuscript
    Recently there is some new interest in understanding the physical reality behind the formalism of quantum mechanics. This paper relates the known “quantum mysteries” of QM with the properties of the underlying structure of discrete space. DOI: 10.5281/zenodo.5236617.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. The Physics and Metaphysics of Pure Shape Dynamics.Antonio Vassallo, Pedro Naranjo & Tim Koslowski - 2022 - In The Foundations of Spacetime Physics: Philosophical Perspectives. New York, NY: Routledge.
    The goal of this essay is twofold. First, it provides a quick look at the foundations of modern relational mechanics by tracing its development from Julian Barbour and Bruno Bertotti's original ideas until present-day's pure shape dynamics. Secondly, it discusses the most appropriate metaphysics for pure shape dynamics, showing that relationalism is more of a nuanced thesis rather than an elusive one. The chapter ends with a brief assessment of the prospects of pure shape dynamics in light of (...) physics. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Wigner’s friend and Relational Quantum Mechanics: A Reply to Laudisa.Nikki Weststeijn - 2021 - Foundations of Physics 51 (4):1-13.
    Relational Quantum Mechanics is an interpretation of quantum mechanics proposed by Carlo Rovelli. Rovelli argues that, in the same spirit as Einstein’s theory of relativity, physical quantities can only have definite values relative to an observer. Relational Quantum Mechanics is hereby able to offer a principled explanation of the problem of nested measurement, also known as Wigner’s friend. Since quantum states are taken to be relative states that depend on both the system and the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. The Ontology of Quantum Field Theory: Structural Realism Vindicated?David Glick - 2016 - Studies in History and Philosophy of Science Part A 59:78-86.
    In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  40. Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement is available. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Can We Make Sense of Relational Quantum Mechanics?Quentin Ruyant - 2018 - Foundations of Physics 48 (4):440-455.
    The relational interpretation of quantum mechanics proposes to solve the measurement problem and reconcile completeness and locality of quantum mechanics by postulating relativity to the observer for events and facts, instead of an absolute “view from nowhere”. The aim of this paper is to clarify this interpretation, and in particular, one of its central claims concerning the possibility for an observer to have knowledge about other observer’s events. I consider three possible readings of this claim, and develop (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  42. The Problem of Molecular Structure Just Is The Measurement Problem.Alexander Franklin & Vanessa Angela Seifert - forthcoming - The British Journal for the Philosophy of Science.
    Whether or not quantum physics can account for molecular structure is a matter of considerable controversy. Three of the problems raised in this regard are the problems of molecular structure. We argue that these problems are just special cases of the measurement problem of quantum mechanics: insofar as the measurement problem is solved, the problems of molecular structure are resolved as well. In addition, we explore one consequence of our argument: that claims about the reduction or emergence of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  43. Structural Realism and the Problem of Inequivalent Representations in Quantum Field Theory.Iulian D. Toader - manuscript
    This unpublished paper, written in 2005 in the PhD philosophy program at Notre Dame, argues that algebraic structural realism faces a difficulty raised by the existence of inequivalent representations in quantum field theory.
    Download  
     
    Export citation  
     
    Bookmark  
  44. Common-sense Realism and the Unimaginable Otherness of Science.Bradley Monton - 2007 - Principia: An International Journal of Epistemology 11 (2):117-126.
    Bas van Fraassen endorses both common-sense realism — the view, roughly, that the ordinary macroscopic objects that we take to exist actually do exist — and constructive empiricism — the view, roughly, that the aim of science is truth about the observable world. But what happens if common-sense realism and science come into conflict? I argue that it is reasonable to think that they could come into conflict, by giving some motivation for a mental monist solution to the measurement problem (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Carlo Rovelli's quantum mechanics and contextual realism.Francois-Igor Pris - 2019 - Bulletin of Chelyabinsk State University 8 (53):102-107.
    Download  
     
    Export citation  
     
    Bookmark  
  46. Quantum Mechanics as the Solution to a Maximization Problem on the Entropy of All Quantum Measurements.Harvey-Tremblay Alexandre - manuscript
    This work presents a novel formulation of quantum mechanics as the solution to an entropy maximization problem constrained by empirical measurement outcomes. By treating the complete set of possible measurement outcomes as an optimization constraint, our entropy maximization problem derives the axioms of quantum mechanics as theorems, demonstrating that the theory's mathematical structure is the least biased probability measure consistent with the observed data. This approach reduces the foundation of quantum mechanics to a single axiom, the measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Quantum Mereology: Factorizing Hilbert Space into Subsystems with Quasi-Classical Dynamics.Sean M. Carroll & Ashmeet Singh - 2021 - Physical Review A 103 (2):022213.
    We study the question of how to decompose Hilbert space into a preferred tensor-product factorization without any pre-existing structure other than a Hamiltonian operator, in particular the case of a bipartite decomposition into "system" and "environment." Such a decomposition can be defined by looking for subsystems that exhibit quasi-classical behavior. The correct decomposition is one in which pointer states of the system are relatively robust against environmental monitoring (their entanglement with the environment does not continually and dramatically increase) and remain (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  48. Selective Realism and the Framework/Interaction Distinction: A Taxonomy of Fundamental Physical Theories.Federico Benitez - 2019 - Foundations of Physics 49 (7):700-716.
    Following the proposal of a new kind of selective structural realism that uses as a basis the distinction between framework and interaction theories, this work discusses relevant applications in fundamental physics. An ontology for the different entities and properties of well-known theories is thus consistently built. The case of classical field theories—including general relativity as a classical theory of gravitation—is examined in detail, as well as the implications of the classification scheme for issues of realism in quantum mechanics. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  49. Whence deep realism for Everettian quantum mechanics?Raoni Wohnrath Arroyo & Jonas R. Becker Arenhart - 2022 - Foundations of Physics 52 (6):121.
    ‘Shallow’ and ‘deep’ versions of scientific realism may be distinguished as follows: the shallow realist is satisfied with belief in the existence of the posits of our best scientific theories; by contrast, deep realists claim that realism can be legitimate only if such entities are described in metaphysical terms. We argue that this methodological discussion can be fruitfully applied in Everettian quantum mechanics, specifically on the debate concerning the existence of worlds and the recent dispute between Everettian actualism and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Quantum Dreams.Brian Wachter - manuscript
    The correlation between quantum phenomena and information is explored using relational quantum mechanics (RQM) and quantum monism as potential frameworks for understanding informational reality's emergence from the merely physical. Emphasizing a top-down approach, the paper advocates applying knowledge of quantum components to our classical world. It highlights the contributions of researchers such as Rovelli, Wheeler, and Everett, who have made strides in this direction. -/- The paper elucidates the duality of quantum states as counterintuitive (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000