Results for 'Space elementary quantum'

966 found
Order:
  1.  13
    An Ontological Framework of Space‐Time‐Entropy.Zhikai Zou - manuscript
    A speculative concretized framework for understanding relativity and quantum field theory. A thermodynamic time definition with clear time arrow based on the Law of entropy increase. Abstract: Define time as a mapping of the whole universe transformations. In this definition about the whole transformations,the concept of relative time or local time is different from the time of the universe. And this definition is consistent with the most physical phenomena. The physicists of last century excluded the possibility of the existence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Information, physics, quantum: the search for links.John Archibald Wheeler - 1989 - In Wheeler John Archibald, Proceedings III International Symposium on Foundations of Quantum Mechanics. pp. 354-358.
    This report reviews what quantum physics and information theory have to tell us about the age-old question, How come existence? No escape is evident from four conclusions: (1) The world cannot be a giant machine, ruled by any preestablished continuum physical law. (2) There is no such thing at the microscopic level as space or time or spacetime continuum. (3) The familiar probability function or functional, and wave equation or functional wave equation, of standard quantum theory provide (...)
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  3. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then (...) particle, neutrino, on the ground of energy conservation in quantum mechanics, afterwards confirmed experimentally. Bohr recognized his defeat and Pauli’s truth: the paradigm of elementary particles (furthermore underlying the Standard model) dominates nowadays. However, the reason of energy conservation in quantum mechanics is quite different from that in classical mechanics (the Lie group of all translations in time). Even more, if the reason was the latter, Bohr, Cramers, and Slatters’s argument would be valid. The link between the “conservation of energy conservation” and the problem of hidden variables is the following: the former is equivalent to their absence. The same can be verified historically by the unification of Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics in the contemporary quantum mechanics by means of the separable complex Hilbert space. The Heisenberg version relies on the vector interpretation of Hilbert space, and the Schrödinger one, on the wave-function interpretation. However the both are equivalent to each other only under the additional condition that a certain well-ordering is equivalent to the corresponding ordinal number (as in Neumann’s definition of “ordinal number”). The same condition interpreted in the proper terms of quantum mechanics means its “unitarity”, therefore the “conservation of energy conservation”. In other words, the “conservation of energy conservation” is postulated in the foundations of quantum mechanics by means of the concept of the separable complex Hilbert space, which furthermore is equivalent to postulating the absence of hidden variables in quantum mechanics (directly deducible from the properties of that Hilbert space). Further, the lesson of that unification (of Heisenberg’s approach and Schrödinger’s version) can be directly interpreted in terms of the unification of general relativity and quantum mechanics in the cherished “quantum gravity” as well as a “manual” of how one can do this considering them as isomorphic to each other in a new mathematical structure corresponding to quantum information. Even more, the condition of the unification is analogical to that in the historical precedent of the unifying mathematical structure (namely the separable complex Hilbert space of quantum mechanics) and consists in the class of equivalence of any smooth deformations of the pseudo-Riemannian space of general relativity: each element of that class is a wave function and vice versa as well. Thus, quantum mechanics can be considered as a “thermodynamic version” of general relativity, after which the universe is observed as if “outside” (similarly to a phenomenological thermodynamic system observable only “outside” as a whole). The statistical approach to that “phenomenological thermodynamics” of quantum mechanics implies Gibbs classes of equivalence of all states of the universe, furthermore re-presentable in Boltzmann’s manner implying general relativity properly … The meta-lesson is that the historical lesson can serve for future discoveries. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Alternative concept on space used in the BSM – Supergravitational Unified Theory unveils the connection between the micro-cosmos and Universe.Stoyan Sarg Sargoytchev - unknown
    The theory is based on an original alternative space-time concept that leads to a new vision of the micro-cosmos and Universe. The relationship between the forces in Nature is unveiled by adopting the following framework: (1) Empty space without any physical properties and restrictions; (2) Two fundamental particles of superdense protomatter with parameters associated with Planck’s scale; (3) A Fundamental law of Supergravitation (SG) with forces inversely proportional to the cube of distance in a pure empty space. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  6. The Particle of Haag's Local Quantum Physics: A critical assessment.Gregg Jaeger - 2024 - Entropy 26:748.
    Rudolf Haag’s Local Quantum Physics (LQP) is an alternative framework to conventional relativistic quantum field theory for combining special relativity and quantum theory based on first principles, making it of great interest for the purposes of conceptual analysis despite currently being relatively limited as a tool for making experimental predictions. In LQP, the elementary particles are defined as species of causal link between interaction events, together with which they comprise its most fundamental entities. This notion of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference frame (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  8. Representation and Reality by Language: How to make a home quantum computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Is Mass at Rest One and the Same? A Philosophical Comment: on the Quantum Information Theory of Mass in General Relativity and the Standard Model.Vasil Penchev - 2014 - Journal of SibFU. Humanities and Social Sciences 7 (4):704-720.
    The way, in which quantum information can unify quantum mechanics (and therefore the standard model) and general relativity, is investigated. Quantum information is defined as the generalization of the concept of information as to the choice among infinite sets of alternatives. Relevantly, the axiom of choice is necessary in general. The unit of quantum information, a qubit is interpreted as a relevant elementary choice among an infinite set of alternatives generalizing that of a bit. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Epistemology of String Theory in Quantum Gravity.Nicolae Sfetcu - manuscript
    In quantum field theory, the main obstacle is the occurrence of the untreatable infinities in the interactions of the particles due to the possibility of arbitrary distances between the point particles. Strings, as extended objects, provide a better framework, which allows finite calculations. String theory is part of a research program in which point particles in particle physics are replaced by one-dimensional objects called strings. It describes how these strings propagate through space and interact with one another. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Spontaneous emerging of material by applying the Darwin's evolutionary theory to in quantum realm and its impact on simplifying the dilemmas.Vahid Dabbagh - manuscript
    What is the boundary between the animate and inanimate world? It is obvious that the animate world is under rules of inanimate world. Is the converse true? This paper is aimed at imposing the well-known Darwin's theory of evolution to inanimate world of atomic realm where bizarre behavior of electron challenges our everyday perception of inanimate world. This paper, suggests a weird, peculiar and highly elegant speculation of existing, leads suspicious about validity of the law of conservation of mass, provides (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. From Yijing to Copenhagen Interpretation of Quantum Physics.David Leong - manuscript
    In the quest and search for a physical theory of everything from the macroscopic large body matter to the microscopic elementary particles, with strange and weird concepts springing from quantum physics discovery, irreconcilable positions and inconvenient facts complicated physics – from Newtonian physics to quantum science, the question is- how do we close the gap? Indeed, there is a scientific and mathematical fireworks when the issue of quantum uncertainties and entanglements cannot be explained with classical physics. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Choice, Infinity, and Negation: Both Set-Theory and Quantum-Information Viewpoints to Negation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (14):1-3.
    The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. A Fundamentally Irreversible World as an Opportunity towards a Consistent Understanding of Quantum and Cosmological Contexts.Tributsch Helmut Helmuttributsch@Aliceit - 2016 - Lournal of Modern Physics 7:1455-1482.
    In a preceding publication a fundamentally oriented and irreversible world was shown to be de- rivable from the important principle of least action. A consequence of such a paradigm change is avoidance of paradoxes within a “dynamic” quantum physics. This becomes essentially possible because fundamental irreversibility allows consideration of the “entropy” concept in elementary processes. For this reason, and for a compensation of entropy in the spread out energy of the wave, the duality of particle and wave has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Interpretation Misunderstandings about Elementary Quantum Mechanics.Federico G. Lopez Armengol & Gustavo E. Romero - 2017 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 7:55--60.
    Quantum Mechanics is a fundamental physical theory about atomic-scale processes. It was built between 1920 and 1940 by the most distinguished physicists of that time. The accordance between the predictions of the theory and experimental results is remarkable. The physical interpretation of its mathematical constructs, however, raised unprecedented controversies. Ontological, semantic, and epistemic vagueness abound in the orthodox interpretations and have resulted in serious misunderstandings that are often repeated in textbooks and elsewhere. In this work, we identify, criticize, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. A BRIEF OUTLINE OF THE POSSIBLE BASICS OF COSMOLOGY IN THE 22nd CENTURY, AND WHAT IT MEANS FOR RELIGION.Rodney Bartlett - manuscript
    This article’s conclusion is that the theories of Einstein are generally correct and will still be relevant in the next century (there will be modifications necessary for development of quantum gravity). Those Einsteinian theories are Special Relativity, General Relativity, and the title of a paper he published in 1919 which asked if gravitation plays a role in the composition of elementary particles of matter. This paper was the bridge between General Relativity and the Unified Field Theory he sought (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. The Elementary Particles of Quantum Fields.Gregg Jaeger - 2021 - Entropy 11 (23):1416.
    The elementary particles of relativistic quantum field theory are not simple field quanta, as has long been assumed. Rather, they supplement quantum fields, on which they depend but to which they are not reducible, as shown here with particles defined instead as a unified collection of properties that appear in both physical symmetry group representations and field propagators. This notion of particle provides consistency between the practice of particle physics and its basis in quantum field theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  20. Energy in the Universe and its Syntropic Forms of Existence According to the BSM - Superg ravitation Unified Theory.Stoyan Sarg Sargoytchev - 2013 - Syntropy 2013 (2).
    According to the BSM- Supergravitation Unified Theory (BSM-SG), the energy is indispensable feature of matter, while the matter possesses hierarchical levels of organization from a simple to complex forms, with appearance of fields at some levels. Therefore, the energy also follows these levels. At the fundamental level, where the primary energy source exists, the matter is in its primordial form, where two super-dense fundamental particles (FP) exist in a classical pure empty space (not a physical vacuum). They are associated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Elastic Membrane Based Model of Human Perception.Alexander Egoyan - 2011 - Toward a Science of Consciousness.
    Undoubtedly the Penrose-Hameroff Orch OR model may be considered as a good theory for describing information processing mechanisms and holistic phenomena in the human brain, but it doesn’t give us satisfactory explanation of human perception. In this work a new approach explaining our perception is introduced, which is in good agreement with Orch OR model and other mainstream science theories such as string theory, loop quantum gravity and holographic principle. It is shown that human perception cannot be explained in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Science Meets Philosophy: Metaphysical Gap & Bilateral Brain.Hermann G. W. Burchard - 2020 - Philosophy Study 10 (10):599-614.
    The essay brings a summation of human efforts seeking to understand our existence. Plato and Kant & cognitive science complete reduction of philosophy to a neural mechanism, evolved along elementary Darwinian principles. Plato in his famous Cave Allegory explains that between reality and our experience of it there exists a great chasm, a metaphysical gap, fully confirmed through particle-wave duality of quantum physics. Kant found that we have two kinds of perception, two senses: By the spatial outer sense (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Mathematical Nature of Reality, Plus Gravitation-Electromagnetism Unification, Derived from Revised Gravitational Tidal Forces and Mass-from-Gravity Concept.Rodney Bartlett - manuscript
    This article had its beginning with Einstein's 1919 paper "Do gravitational fields play an essential role in the structure of elementary particles?" Together with General Relativity's statement that gravity is not a pull but is a push caused by the curvature of space-time, a hypothesis for Earth's ocean tides was developed that does not solely depend on the Sun and Moon as Kepler and Newton believed. It also borrows from Galileo. The breakup of planets and asteroids by white (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Quantum Mereology: Factorizing Hilbert Space into Subsystems with Quasi-Classical Dynamics.Sean M. Carroll & Ashmeet Singh - 2021 - Physical Review A 103 (2):022213.
    We study the question of how to decompose Hilbert space into a preferred tensor-product factorization without any pre-existing structure other than a Hamiltonian operator, in particular the case of a bipartite decomposition into "system" and "environment." Such a decomposition can be defined by looking for subsystems that exhibit quasi-classical behavior. The correct decomposition is one in which pointer states of the system are relatively robust against environmental monitoring (their entanglement with the environment does not continually and dramatically increase) and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  25. A Quantum-Bayesian Route to Quantum-State Space.Christopher A. Fuchs & Rüdiger Schack - 2011 - Foundations of Physics 41 (3):345-356.
    In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent’s personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  26. The metaphysical postulates of modern physics, which should be abandoned.Vlad Terekhovich - 2018 - Metaphyzik (Metaphysics) 27 (1):78-84.
    In the article, I consider seven metaphysical postulates that lie in the foundations of modern physics. These are postulates: about the nature of space-time, about the existence, about the direction of time, about the causality, about the elementary event, about the nature of information and about the immutability of laws. The directions of critical analysis and possible radical revision of these postulates are briefly presented. It is supposed that this revision can indirectly contribute to the development of a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Symmetry and Symmetry Breaking in the Periodic Table: Towards a Group-Theoretical Classification of the Chemical Elements.Pieter Thyssen - 2013 - Dissertation, Ku Leuven
    At the heart of chemistry lies the periodic system of chemical elements. Despite being the cornerstone of modern chemistry, the overall structure of the periodic system has never been fully understood from an atomic physics point of view. Group-theoretical models have been proposed instead, but they suffer from several limitations. Among others, the identification of the correct symmetry group and its decomposition into subgroups has remained a problem to this day. In an effort to deepen our limited understanding of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Towards a Theory of Everything Part I - Introduction of Consciousness in Electromagnetic Theory, Special and General Theory of Relativity.RamLakhan Pandey Vimal - 2010 - Neuroquantology 8 (2):206-230.
    Theory of everything must include consciousness. In this Part I of the series of three articles, we introduce the subjective experience (SE) and/or proto‐experience (PE) aspect of consciousness in classical physics, where PEs are precursors of SEs. In our dualaspect‐ dual‐mode PE‐SE framework, it was hypothesized that fundamental entities (strings or elementary particles: fermions and bosons) have two aspects: (i) material aspect such as mass, charge, spin, and space‐time, and (ii) mental aspect, such as experiences. There are three (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  29. A Physicsl Model of Electron According to the Basic Structures of Matter Hypothesis.Stoyan Sarg - 2003 - Physics Essays 16 (2):180-195.
    A physical model of the electron is suggested according to the basic structures of matter (BSM) hypothesis. BSM is based on an alternative concept about the physical vacuum, assuming that space contains an underlying grid structure of nodes formed of superdense subelementary particles, which are also involved in the structure of the elementary particles. The proposed grid structure is formed of vibrating nodes that possess quantum features and energy well. It is admitted that this hypothetical structure could (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. My mind is not the universe: the map is not the territory.Xiaoyang Yu - manuscript
    In order to describe my findings/conclusions systematically, a new semantic system (i.e., a new language) has to be intentionally defined by the present article. Humans are limited in what they know by the technical limitation of their cortical language network. A reality is a situation model (SM). For example, the conventionally-called “physical reality” around my conventionally-called “physical body” is actually a “geometric” SM of my brain. The universe is an autonomous objective parallel computing automaton which evolves by itself automatically/unintentionally – (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. New Quantum Spin Perspective of Quantum Gravity and Space-Time of Mind-Stuff.Rakshit Vyas & Mihir Joshi - 2023 - Journal of Applied Consciousness Studies 11 (2):112-19.
    The fundamental building block of the loop quantum gravity (LQG) is the spin network which is used to quantize the physical space-time in the LQG. Recently, the novel quantum spin is proposed using the basic concepts of the spin network. This perspective redefines the notion of the quantum spin and also introduces the novel definition of the reduced Planck constant. The implication of this perspective is not only limited to the quantum gravity; but also found (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Cosmos is a (fatalistic) state machine: Objective theory (cosmos, objective reality, scientific image) vs. Subjective theory (consciousness, subjective reality, manifest image).Xiaoyang Yu - manuscript
    As soon as you believe an imagination to be nonfictional, this imagination becomes your ontological theory of the reality. Your ontological theory (of the reality) can describe a system as the reality. However, actually this system is only a theory/conceptual-space/imagination/visual-imagery of yours, not the actual reality (i.e., the thing-in-itself). An ontological theory (of the reality) actually only describes your (subjective/mental) imagination/visual-imagery/conceptual-space. An ontological theory of the reality, is being described as a situation model (SM). There is no way (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. On a new mathematical framework for fundamental theoretical physics.Robert E. Var - 1975 - Foundations of Physics 5 (3):407-431.
    It is shown by means of general principles and specific examples that, contrary to a long-standing misconception, the modern mathematical physics of compressible fluid dynamics provides a generally consistent and efficient language for describing many seemingly fundamental physical phenomena. It is shown to be appropriate for describing electric and gravitational force fields, the quantized structure of charged elementary particles, the speed of light propagation, relativistic phenomena, the inertia of matter, the expansion of the universe, and the physical nature of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Discrete space and the underlying reality of Quantum Mechanics.Sydney Ernest Grimm - manuscript
    Recently there is some new interest in understanding the physical reality behind the formalism of quantum mechanics. This paper relates the known “quantum mysteries” of QM with the properties of the underlying structure of discrete space. DOI: 10.5281/zenodo.5236617.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  36. A Connection between Minkowski and Galilean Space‐times in Quantum Mechanics.Douglas Kutach - 2010 - International Studies in the Philosophy of Science 24 (1):15 – 29.
    Relativistic quantum theories are equipped with a background Minkowski spacetime and non-relativistic quantum theories with a Galilean space-time. Traditional investigations have distinguished their distinct space-time structures and have examined ways in which relativistic theories become sufficiently like Galilean theories in a low velocity approximation or limit. A different way to look at their relationship is to see that both kinds of theories are special cases of a certain five-dimensional generalization involving no limiting procedures or approximations. When (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Why the Many-Worlds Interpretation of quantum mechanics needs more than Hilbert space structure.Meir Hemmo & Orly Shenker - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg, Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 61-70.
    McQueen and Vaidman argue that the Many Worlds Interpretation (MWI) of quantum mechanics provides local causal explanations of the outcomes of experiments in our experience that is due to the total effect of all the worlds together. We show that although the explanation is local in one world, it requires a causal influence that travels across different worlds. We further argue that in the MWI the local nature of our experience is not derivable from the Hilbert space structure, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38. Space Emergence in Contemporary Physics: Why We Do Not Need Fundamentality, Layers of Reality and Emergence.Baptiste Le Bihan - 2018 - Disputatio 10 (49):71-95.
    Space does not exist fundamentally: it emerges from a more fundamental non-spatial structure.’ This intriguing claim appears in various research programs in contemporary physics. Philosophers of physics tend to believe that this claim entails either that spacetime does not exist, or that it is derivatively real. In this article, I introduce and defend a third metaphysical interpretation of the claim: reductionism about space. I argue that, as a result, there is no need to subscribe to fundamentality, layers of (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  39.  69
    Theory of Spatial Materialization of Quantum Possibilities in an Infinite Space.Nicolas Vega - manuscript
    This paper introduces the Theory of Spatial Materialization of Quantum Possibilities in an Infinite Space, proposing a novel perspective on the realization of quantum probabilities. Traditional interpretations of quantum mechanics, such as the Copenhagen interpretation and the Many-Worlds hypothesis, approach quantum probabilities as either collapsing into a single observable state or manifesting across parallel universes. This theory suggests an alternative: in an infinite space, quantum possibilities materialize simultaneously in distinct spatial regions, without requiring (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Follow the Math!: The Mathematics of Quantum Mechanics as the Mathematics of Set Partitions Linearized to (Hilbert) Vector Spaces.David Ellerman - 2022 - Foundations of Physics 52 (5):1-40.
    The purpose of this paper is to show that the mathematics of quantum mechanics is the mathematics of set partitions linearized to vector spaces, particularly in Hilbert spaces. That is, the math of QM is the Hilbert space version of the math to describe objective indefiniteness that at the set level is the math of partitions. The key analytical concepts are definiteness versus indefiniteness, distinctions versus indistinctions, and distinguishability versus indistinguishability. The key machinery to go from indefinite to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41.  25
    Future AI, Quantum Physics, and Space Exploration in Understanding a Type V Intelligence (“God”).Angelito Malicse - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  42. The GRW Flash Theory: A Relativistic Quantum Ontology of Matter in Space-Time?Michael Esfeld & Nicolas Gisin - 2014 - Philosophy of Science 81 (2):248-264.
    John Bell proposed an ontology for the GRW modification of quantum mechanics in terms of flashes occurring at space- time points. This article spells out the motivation for this ontology, inquires into the status of the wave function in it, critically examines the claim of its being Lorentz invariant, and considers whether it is a parsimonious but nevertheless physically adequate ontology.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  43. Quantum information theoretic approach to the mind–brain problem.Danko D. Georgiev - 2020 - Progress in Biophysics and Molecular Biology 158:16-32.
    The brain is composed of electrically excitable neuronal networks regulated by the activity of voltage-gated ion channels. Further portraying the molecular composition of the brain, however, will not reveal anything remotely reminiscent of a feeling, a sensation or a conscious experience. In classical physics, addressing the mind–brain problem is a formidable task because no physical mechanism is able to explain how the brain generates the unobservable, inner psychological world of conscious experiences and how in turn those conscious experiences steer the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. An Elementary System of Axioms for Euclidean Geometry Based on Symmetry Principles.Boris Čulina - 2018 - Axiomathes 28 (2):155-180.
    In this article I develop an elementary system of axioms for Euclidean geometry. On one hand, the system is based on the symmetry principles which express our a priori ignorant approach to space: all places are the same to us, all directions are the same to us and all units of length we use to create geometric figures are the same to us. On the other hand, through the process of algebraic simplification, this system of axioms directly provides (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  45. What is an elementary particle?Erwin Schrödinger - 1950 - Annual Report of the Board of Regents of The Smithsonian Institution:183-196.
    Schrödinger discusses what an elementary particle is. This essay originally appeared in the journal Endeavour.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  46. On the Role of Inconsistency in Quantum Foundational Debate and Hilbert Space Formulation.Debajyoti Gangopadhyay - 2022 - Quanta 11 (Number 1):28-41.
    This article is intended mainly to develop an expository outline of an inherently inconsistent reasoning in the development of quantum mechanics during 1920s, which set up the background of proposing different variants of quantum logic a bit later. We will discuss here two of the quantum logical variants with reference to Hilbert space formulation, based on the proposals of Bohr and Schrödinger as a result of addressing the same kernel of difficulties and will give a relative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Have we Lost Spacetime on the Way? Narrowing the Gap between General Relativity and Quantum Gravity.Baptiste Le Bihan & Niels Siegbert Linnemann - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65 (C):112-121.
    Important features of space and time are taken to be missing in quantum gravity, allegedly requiring an explanation of the emergence of spacetime from non-spatio-temporal theories. In this paper, we argue that the explanatory gap between general relativity and non-spatio-temporal quantum gravity theories might significantly be reduced with two moves. First, we point out that spacetime is already partially missing in the context of general relativity when understood from a dynamical perspective. Second, we argue that most approaches (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  48. Quantum Anthropology: Man, Cultures, and Groups in a Quantum Perspective.Radek Trnka & Radmila Lorencová - 2016 - Charles University Karolinum Press.
    This philosophical anthropology tries to explore the basic categories of man’s being in the worlds using a special quantum meta-ontology that is introduced in the book. Quantum understanding of space and time, consciousness, or empirical/nonempirical reality elicits new questions relating to philosophical concerns such as subjectivity, free will, mind, perception, experience, dialectic, or agency. The authors have developed an inspiring theoretical framework transcending the boundaries of particular disciplines, e.g. quantum philosophy, metaphysics of consciousness, philosophy of mind, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  49. Quantum mechanics unscrambled.Jean-Michel Delhotel - 2014
    Is quantum mechanics about ‘states’? Or is it basically another kind of probability theory? It is argued that the elementary formalism of quantum mechanics operates as a well-justified alternative to ‘classical’ instantiations of a probability calculus. Its providing a general framework for prediction accounts for its distinctive traits, which one should be careful not to mistake for reflections of any strange ontology. The suggestion is also made that quantum theory unwittingly emerged, in Schrödinger’s formulation, as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 966