Results for 'cellular computing'

939 found
Order:
  1. Genome Informatics: The Role of DNA in Cellular Computations.James A. Shapiro - 2006 - Biological Theory 1 (3):288-301.
    Cells are cognitive entities possessing great computational power. DNA serves as a multivalent information storage medium for these computations at various time scales. Information is stored in sequences, epigenetic modifications, and rapidly changing nucleoprotein complexes. Because DNA must operate through complexes formed with other molecules in the cell, genome functions are inherently interactive and involve two-way communication with various cellular compartments. Both coding sequences and repetitive sequences contribute to the hierarchical systemic organization of the genome. By virtue of nucleoprotein (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  2. How Many Points are there in a Line Segment? – A new answer from Discrete-Cellular Space viewpoint.Victor Christianto & Florentin Smarandache - manuscript
    While it is known that Euclid’s five axioms include a proposition that a line consists at least of two points, modern geometry avoid consistently any discussion on the precise definition of point, line, etc. It is our aim to clarify one of notorious question in Euclidean geometry: how many points are there in a line segment? – from discrete-cellular space (DCS) viewpoint. In retrospect, it may offer an alternative of quantum gravity, i.e. by exploring discrete gravitational theories. To elucidate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Test Development for Cellular Phone Addiction among College Students.Melanie Gurat - 2017 - International Journal of Biosciences, Psychiatry and Technology 4 (3):27-36.
    This study aimed to develop a test to determine the level of cellular addiction among college students. The items included in this instrument were obtained from the internet source and were verified by the students. The data were analyzed through reliability analysis and factor analyses. The process in developing the test for cellular phone addiction questionnaire was described, and the final version of the instrument was presented. Findings revealed three factors namely: habitually/routinely activity, preoccupation, and negative consequences. It (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. From Zeldovich Approximation to Burgers’ equation: A Plausible Route to Cellular Automata Adhesion Universe.Florentin Smarandache & Victor Christianto - manuscript
    Some years ago, Hidding et al. suggest that the emergence of intricate and pervasive weblike structure of the Universe on Megaparsec scales can be approximated by a well-known equation from fluid mechanics, the Burgers’ equation. The solution to this equation can be obtained from a geometrical formalism. The resulting Adhesion formalism provides deep insight into the dynamics and topology of the Cosmic Web. It uncovers a direct connection between the conditions in the very early Universe and the complex spatial patterns (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Does the solar system compute the laws of motion?Douglas Ian Campbell & Yi Yang - 2019 - Synthese 198 (4):3203-3220.
    The counterfactual account of physical computation is simple and, for the most part, very attractive. However, it is usually thought to trivialize the notion of physical computation insofar as it implies ‘limited pancomputationalism’, this being the doctrine that every deterministic physical system computes some function. Should we bite the bullet and accept limited pancomputationalism, or reject the counterfactual account as untenable? Jack Copeland would have us do neither of the above. He attempts to thread a path between the two horns (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Growing Evidence that Perceptual Qualia are Neuroelectrical Not Computational.Mostyn W. Jones - 2019 - Journal of Consciousness Studies 26 (5-6):89-116.
    Computational neuroscience attributes coloured areas and other perceptual qualia to calculations that are realizable in multiple cellular forms. This faces serious issues in explaining how the various qualia arise and how they bind to form overall perceptions. Qualia may instead be neuroelectrical. Growing evidence indicates that perceptions correlate with neuroelectrical activity spotted by locally activated EEGs, the different qualia correlate with the different electrochemistries of unique detector cells, a unified neural-electromagnetic field binds this activity to form overall perceptions, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Opinions and Outlooks on Morphological Computation.Helmut Hauser, Rudolf M. Füchslin & Rolf Pfeifer (eds.) - 2014 - E-Book.
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of the muscle-tendon (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Making sense of ‘genetic programs’: biomolecular Post–Newell production systems.Mihnea Capraru - 2024 - Biology and Philosophy 39 (2):1-12.
    The biomedical literature makes extensive use of the concept of a genetic program. So far, however, the nature of genetic programs has received no satisfactory elucidation from the standpoint of computer science. This unsettling omission has led to doubts about the very existence of genetic programs, on the grounds that gene regulatory networks lack a predetermined schedule of execution, which may seem to contradict the very idea of a program. I show, however, that we can make perfect sense of genetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Remarks on the Geometry of Complex Systems and Self-Organization.Luciano Boi - 2012 - In Vincenzo Fano, Enrico Giannetto, Giulia Giannini & Pierluigi Graziani (eds.), Complessità e Riduzionismo. ISONOMIA - Epistemologica Series Editor. pp. 28-43.
    Let us start by some general definitions of the concept of complexity. We take a complex system to be one composed by a large number of parts, and whose properties are not fully explained by an understanding of its components parts. Studies of complex systems recognized the importance of “wholeness”, defined as problems of organization (and of regulation), phenomena non resolvable into local events, dynamics interactions in the difference of behaviour of parts when isolated or in higher configuration, etc., in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Making Sense of Sensory Input.Richard Evans, José Hernández-Orallo, Johannes Welbl, Pushmeet Kohli & Marek Sergot - 2021 - Artificial Intelligence 293 (C):103438.
    This paper attempts to answer a central question in unsupervised learning: what does it mean to “make sense” of a sensory sequence? In our formalization, making sense involves constructing a symbolic causal theory that both explains the sensory sequence and also satisfies a set of unity conditions. The unity conditions insist that the constituents of the causal theory – objects, properties, and laws – must be integrated into a coherent whole. On our account, making sense of sensory input is a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Epistemic Zeno Effect.Nadisha-Marie Aliman - manuscript
    This short autodidactic paper compactly introduces the epistemic algorithmic computation (EaC) paradox, a novel analogy to the Turing paradox. Firstly, it is elucidated why in the deepfake era, crafting a provisional solution to the EaC paradox may be beneficent as it may shed more light on one ingrained consequence of the prevailing algorithmic supremacy paradigm: the retrospective obsolescence of the entire biosphere in the game of life precipitated by algorithms instantiated on inert matter. Secondly, the paper analyzes and deconstructs the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Whispers and Shouts. The measurement of the human act.Fernando Flores Morador & Luis de Marcos Ortega (eds.) - 2021 - Alcalá de Henares, Madrid: Departement of Computational Sciences. University of Alcalá; Madrid.
    The 20th Century is the starting point for the most ambitious attempts to extrapolate human life into artificial systems. Norbert Wiener’s Cybernetics, Claude Shannon’s Information Theory, John von Neumann’s Cellular Automata, Universal Constructor to the Turing Test, Artificial Intelligence to Maturana and Varela’s Autopoietic Organization, all shared the goal of understanding in what sense humans resemble a machine. This scientific and technological movement has embraced all disciplines without exceptions, not only mathematics and physics but also biology, sociology, psychology, economics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Rechnender Raum (Calculating Space).Konrad Zuse - 1969 - Schriften Zur Dataverarbeitung 1.
    Zuse proposed that the universe is being computed by some sort of cellular automaton or other discrete computing machinery, challenging the long-held view that some physical laws are continuous by nature. Calculating Space is the title of MIT's English translation of Konrad Zuse's 1969 Rechnender Raum, the first work on digital physics. This is the LaTeX edition by A. German and H. Zenil based on the MIT's English translation with permission from the MIT and Konrad Zuse's son Horst (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  15. Digital metaphysics.Eric Steinhart - 1998 - In Terrell Ward Bynum & James H. Moor (eds.), The Digital Phoenix: How Computers are Changing Philosophy. Cambridge: Blackwell. pp. 117--134.
    I discuss the view, increasingly common in physics, that the foundational level of our physical reality is a network of computing machines (so that our universe is ultimately like a cellular automaton). I discuss finitely extended and divided (discrete) space-time and discrete causality. I examine reasons for thinking that the foundational computational complexity of our universe is finite. I discuss the emergence of an ordered complexity hierarchy of levels of objects over the foundational level and I show how (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  16. There’s Plenty of Boole at the Bottom: A Reversible CA Against Information Entropy.Francesco Berto, Jacopo Tagliabue & Gabriele Rossi - 2016 - Minds and Machines 26 (4):341-357.
    “There’s Plenty of Room at the Bottom”, said the title of Richard Feynman’s 1959 seminal conference at the California Institute of Technology. Fifty years on, nanotechnologies have led computer scientists to pay close attention to the links between physical reality and information processing. Not all the physical requirements of optimal computation are captured by traditional models—one still largely missing is reversibility. The dynamic laws of physics are reversible at microphysical level, distinct initial states of a system leading to distinct final (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Persons Versus Brains: Biological Intelligence in Human Organisms.E. Steinhart - 2001 - Biology and Philosophy 16 (1):3-27.
    I go deep into the biology of the human organism to argue that the psychological features and functions of persons are realized by cellular and molecular parallel distributed processing networks dispersed throughout the whole body. Persons supervene on the computational processes of nervous, endocrine, immune, and genetic networks. Persons do not go with brains.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  18. ‘Restricted’ and ‘General’ Complexity Perspectives on Social Bilingualisation and Language Shift Processes.Albert Bastardas-Boada - 2019 - In Albert Bastardas-Boada, Àngels Massip-Bonet & Gemma Bel-Enguix (eds.), Complexity Applications in Language and Communication Sciences. Springer Nature Switzerland AG. pp. 119-137.
    Historical processes exert an influence on the current state and evolution of situations of language contact, brought to bear from different domains, the economic and the political, the ideological and group identities, geo-demographics, and the habits of inter-group use. Clearly, this kind of phenomenon requires study from a complexical and holistic perspective in order to accommodate the variety of factors that belong to different levels and that interrelate with one another in the evolving dynamic of human languaging. Therefore, there is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Simulating Grice: Emergent Pragmatics in Spatialized Game Theory.Patrick Grim - 2011 - In Anton Benz, Christian Ebert & Robert van Rooij (eds.), Language, Games, and Evolution. Springer-Verlag.
    How do conventions of communication emerge? How do sounds or gestures take on a semantic meaning, and how do pragmatic conventions emerge regarding the passing of adequate, reliable, and relevant information? My colleagues and I have attempted in earlier work to extend spatialized game theory to questions of semantics. Agent-based simulations indicate that simple signaling systems emerge fairly naturally on the basis of individual information maximization in environments of wandering food sources and predators. Simple signaling emerges by means of any (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  20. Reducing Prejudice: A Spatialized Game-Theoretic Model for the Contact Hypothesis.Patrick Grim - 2004 - In Jordan Pollack, Mark Bedau, Phil Husbands, Takashi Ikegami & Richard A. Watson (eds.), Artificial Life IX: Proceedings of the Ninth International Conference on Artificial Life. MIT Press. pp. 244-250.
    There are many social psychological theories regarding the nature of prejudice, but only one major theory of prejudice reduction: under the right circumstances, prejudice between groups will be reduced with increased contact. On the one hand, the contact hypothesis has a range of empirical support and has been a major force in social change. On the other hand, there are practical and ethical obstacles to any large-scale controlled test of the hypothesis in which relevant variables can be manipulated. Here we (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  21. Dependence relationships between Gene Ontology terms based on TIGR gene product annotations.Anand Kumar, Barry Smith & Christian Borgelt - 2004 - Proceedings of the 3rd International Workshop on Computational Terminology 2004:31-38.
    The Gene Ontology is an important tool for the representation and processing of information about gene products and functions. It provides controlled vocabularies for the designations of cellular components, molecular functions, and biological processes used in the annotation of genes and gene products. These constitute three separate ontologies, of cellular components), molecular functions and biological processes, respectively. The question we address here is: how are the terms in these three separate ontologies related to each other? We use statistical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22.  50
    Cellular Primary Consciousness Theory (CPCT): The Foundation Intelligence of Emergent Phenomena in Closed Systems; in Theory and Practice And Open and Closed Systems Theory (OCST): The Purpose of Meaninglessness.Brian Brown - manuscript
    This paper presents a unified theory of reality, which integrates two interdependent frameworks: Cellular Primary Consciousness Theory (CPCT) and Open and Closed Systems Theory (OCST). Although CPCT and OCST can each stand as individual theories, they are, in this work, combined to form a cohesive explanation of both the mechanics and purpose of the universe. CPCT posits that consciousness is a fundamental aspect of all life, extending to even the simplest cells, rather than being an emergent property exclusive to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. On Cellular Automata Representation of Submicroscopic Physics: From Static Space to Zuse’s Calculating Space Hypothesis.Victor Christianto, Volodymyr Krasnoholovets & Florentin Smarandache - manuscript
    In some recent papers (G. ‘t Hooft and others), it has been argued that quantum mechanics can arise from classical cellular automata. Nonetheless, G. Shpenkov has proved that the classical wave equation makes it possible to derive a periodic table of elements, which is very close to Mendeleyev’s one, and describe also other phenomena related to the structure of molecules. Hence the classical wave equation complements Schrödinger’s equation, which implies the appearance of a cellular automaton molecular model starting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Cellular Mechanisms of Cooperative Context-Sensitive Predictive Inference.Tomas Marvan & William Alfred Phillips - 2024 - Current Research in Neurobiology 6.
    We argue that prediction success maximization is a basic objective of cognition and cortex, that it is compatible with but distinct from prediction error minimization, that neither objective requires subtractive coding, that there is clear neurobiological evidence for the amplification of predicted signals, and that we are unconvinced by evidence proposed in support of subtractive coding. We outline recent discoveries showing that pyramidal cells on which our cognitive capabilities depend usually transmit information about input to their basal dendrites and amplify (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. An Outline of Cellular Automaton Universe via Cosmological KdV equation.Victor Christianto, Florentin Smarandache & Yunita Umniyati - manuscript
    It has been known for long time that the cosmic sound wave was there since the early epoch of the Universe. Signatures of its existence are abound. However, such a sound wave model of cosmology is rarely developed fully into a complete framework. This paper can be considered as our second attempt towards such a complete description of the Universe based on soliton wave solution of cosmological KdV equation. Then we advance further this KdV equation by virtue of Cellular (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Computational Thought Experiments for a More Rigorous Philosophy and Science of the Mind.Iris Oved, Nikhil Krishnaswamy, James Pustejovsky & Joshua Hartshorne - 2024 - In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey & E. Hazeltine (eds.), Proceedings of the 46th Annual Conference of the Cognitive Science Society. CC BY. pp. 601-609.
    We offer philosophical motivations for a method we call Virtual World Cognitive Science (VW CogSci), in which researchers use virtual embodied agents that are embedded in virtual worlds to explore questions in the field of Cognitive Science. We focus on questions about mental and linguistic representation and the ways that such computational modeling can add rigor to philosophical thought experiments, as well as the terminology used in the scientific study of such representations. We find that this method forces researchers to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Computers, Dynamical Systems, Phenomena, and the Mind.Marco Giunti - 1992 - Dissertation, Indiana University
    This work addresses a broad range of questions which belong to four fields: computation theory, general philosophy of science, philosophy of cognitive science, and philosophy of mind. Dynamical system theory provides the framework for a unified treatment of these questions. ;The main goal of this dissertation is to propose a new view of the aims and methods of cognitive science--the dynamical approach . According to this view, the object of cognitive science is a particular set of dynamical systems, which I (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  28. Computer Simulation of Human Thinking: An Inquiry into its Possibility and Implications.Napoleon Mabaquiao Jr - 2011 - Philosophia 40 (1):76-87.
    Critical in the computationalist account of the mind is the phenomenon called computational or computer simulation of human thinking, which is used to establish the theses that human thinking is a computational process and that computing machines are thinking systems. Accordingly, if human thinking can be simulated computationally then human thinking is a computational process; and if human thinking is a computational process then its computational simulation is itself a thinking process. This paper shows that the said phenomenon—the computational (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. A Computational Framework for Concept Representation in Cognitive Systems and Architectures: Concepts as Heterogeneous Proxytypes.Antonio Lieto - 2014 - Proceedings of 5th International Conference on Biologically Inspired Cognitive Architectures, Boston, MIT, Pocedia Computer Science, Elsevier:1-9.
    In this paper a possible general framework for the representation of concepts in cognitive artificial systems and cognitive architectures is proposed. The framework is inspired by the so called proxytype theory of concepts and combines it with the heterogeneity approach to concept representations, according to which concepts do not constitute a unitary phenomenon. The contribution of the paper is twofold: on one hand, it aims at providing a novel theoretical hypothesis for the debate about concepts in cognitive sciences by providing (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  30. Ontologies of cellular networks.Arp Robert & Barry Smith - 2008 - Science Signalling 1 (50):1--3.
    A comparison of six alternative definitions of the term 'cellular pathway' against the background of ontological realism.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Computer Simulations in Science and Engineering. Concept, Practices, Perspectives.Juan Manuel Durán - 2018 - Springer.
    This book addresses key conceptual issues relating to the modern scientific and engineering use of computer simulations. It analyses a broad set of questions, from the nature of computer simulations to their epistemological power, including the many scientific, social and ethics implications of using computer simulations. The book is written in an easily accessible narrative, one that weaves together philosophical questions and scientific technicalities. It will thus appeal equally to all academic scientists, engineers, and researchers in industry interested in questions (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  32. The ethics of cellular reprogramming.Anna Smajdor & Adrian Villalba - forthcoming - Cellular Reprogramming 25.
    Louise Brown's birth in 1978 heralded a new era not just in reproductive technology, but in the relationship between science, cells, and society. For the first time, human embryos could be created, selected, studied, manipulated, frozen, altered, or destroyed, outside the human body. But with this possibility came a plethora of ethical questions. Is it acceptable to destroy a human embryo for the purpose of research? Or to create an embryo with the specific purpose of destroying it for research? In (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. The Origin of Cellular Life and Biosemiotics.Attila Grandpierre - 2013 - Biosemiotics (3):1-15.
    Recent successes of systems biology clarified that biological functionality is multilevel. We point out that this fact makes it necessary to revise popular views about macromolecular functions and distinguish between local, physico-chemical and global, biological functions. Our analysis shows that physico-chemical functions are merely tools of biological functionality. This result sheds new light on the origin of cellular life, indicating that in evolutionary history, assignment of biological functions to cellular ingredients plays a crucial role. In this wider picture, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  64
    INTELLIGENT COMPUTING APPLICATIONS IN LINGUISTICS.Mohit Gangwar - 2024 - Rabindra Bharati Patrika (6):113-119.
    The intersection of intelligent computing and linguistics has emerged as a vibrant field of study, offering innovative solutions and applications that transform how we understand and interact with language. This paper explores the diverse applications of intelligent computing in linguistics, encompassing natural language processing (NLP), computational linguistics, language modeling, speech recognition, and more. It delves into the underlying technologies, methodologies, and the impact of these advancements on various linguistic subfields. Through an extensive review of recent literature, case studies, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Apical amplification—a cellular mechanism of conscious perception?Tomas Marvan, Michal Polák, Talis Bachmann & William A. Phillips - 2021 - Neuroscience of Consciousness 7 (2):1-17.
    We present a theoretical view of the cellular foundations for network-level processes involved in producing our conscious experience. Inputs to apical synapses in layer 1 of a large subset of neocortical cells are summed at an integration zone near the top of their apical trunk. These inputs come from diverse sources and provide a context within which the transmission of information abstracted from sensory input to their basal and perisomatic synapses can be amplified when relevant. We argue that apical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Cognitive Computation sans Representation.Paul Schweizer - 2017 - In Thomas M. Powers (ed.), Philosophy and Computing: Essays in epistemology, philosophy of mind, logic, and ethics. Cham: Springer. pp. 65-84.
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content is (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  37. Why Computers are not Intelligent: An Argument.Richard Oxenberg - 2017 - Political Animal Magazine.
    Computers can mimic human intelligence, sometimes quite impressively. This has led some to claim that, a.) computers can actually acquire intelligence, and/or, b.) the human mind may be thought of as a very sophisticated computer. In this paper I argue that neither of these inferences are sound. The human mind and computers, I argue, operate on radically different principles.
    Download  
     
    Export citation  
     
    Bookmark  
  38.  95
    Exploring computational theories of mind, algorithms and computations. [REVIEW]Jordan Dopkins - 2024 - Metascience 33 (2).
    Review of The Computational Theory of Mind by Matteo Colombo and Gualtiero Piccinini. Cambridge, 2023, iv + 75 pp, $64.99 HB.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Computer simulation and the features of novel empirical data.Greg Lusk - 2016 - Studies in History and Philosophy of Science Part A 56:145-152.
    In an attempt to determine the epistemic status of computer simulation results, philosophers of science have recently explored the similarities and differences between computer simulations and experiments. One question that arises is whether and, if so, when, simulation results constitute novel empirical data. It is often supposed that computer simulation results could never be empirical or novel because simulations never interact with their targets, and cannot go beyond their programming. This paper argues against this position by examining whether, and under (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  40. Mechanistic Computational Individuation without Biting the Bullet.Nir Fresco & Marcin Miłkowski - 2019 - British Journal for the Philosophy of Science:axz005.
    Is the mathematical function being computed by a given physical system determined by the system’s dynamics? This question is at the heart of the indeterminacy of computation phenomenon (Fresco et al. [unpublished]). A paradigmatic example is a conventional electrical AND-gate that is often said to compute conjunction, but it can just as well be used to compute disjunction. Despite the pervasiveness of this phenomenon in physical computational systems, it has been discussed in the philosophical literature only indirectly, mostly with reference (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  41. Computation in Physical Systems: A Normative Mapping Account.Paul Schweizer - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 27-47.
    The relationship between abstract formal procedures and the activities of actual physical systems has proved to be surprisingly subtle and controversial, and there are a number of competing accounts of when a physical system can be properly said to implement a mathematical formalism and hence perform a computation. I defend an account wherein computational descriptions of physical systems are high-level normative interpretations motivated by our pragmatic concerns. Furthermore, the criteria of utility and success vary according to our diverse purposes and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  42. From Computer Metaphor to Computational Modeling: The Evolution of Computationalism.Marcin Miłkowski - 2018 - Minds and Machines 28 (3):515-541.
    In this paper, I argue that computationalism is a progressive research tradition. Its metaphysical assumptions are that nervous systems are computational, and that information processing is necessary for cognition to occur. First, the primary reasons why information processing should explain cognition are reviewed. Then I argue that early formulations of these reasons are outdated. However, by relying on the mechanistic account of physical computation, they can be recast in a compelling way. Next, I contrast two computational models of working memory (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  43. Computational entrepreneurship: from economic complexities to interdisciplinary research.Quan-Hoang Vuong - 2019 - Problems and Perspectives in Management 17 (1):117-129.
    The development of technology is unbelievably rapid. From limited local networks to high speed Internet, from crude computing machines to powerful semi-conductors, the world had changed drastically compared to just a few decades ago. In the constantly renewing process of adapting to such an unnaturally high-entropy setting, innovations as well as entirely new concepts, were often born. In the business world, one such phenomenon was the creation of a new type of entrepreneurship. This paper proposes a new academic discipline (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  44. Computer-assisted argument mapping: A Rationale Approach.Martin Davies - 2009 - Higher Education 58:799-820.
    Computer-Assisted Argument Mapping (CAAM) is a new way of understanding arguments. While still embryonic in its development and application, CAAM is being used increasingly as a training and development tool in the professions and government. Inroads are also being made in its application within education. CAAM claims to be helpful in an educational context, as a tool for students in responding to assessment tasks. However, to date there is little evidence from students that this is the case. This paper outlines (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  45. Computers Aren’t Syntax All the Way Down or Content All the Way Up.Cem Bozşahin - 2018 - Minds and Machines 28 (3):543-567.
    This paper argues that the idea of a computer is unique. Calculators and analog computers are not different ideas about computers, and nature does not compute by itself. Computers, once clearly defined in all their terms and mechanisms, rather than enumerated by behavioral examples, can be more than instrumental tools in science, and more than source of analogies and taxonomies in philosophy. They can help us understand semantic content and its relation to form. This can be achieved because they have (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46. Computational modeling in philosophy: introduction to a topical collection.Simon Scheller, Christoph Merdes & Stephan Hartmann - 2022 - Synthese 200 (2):1-10.
    Computational modeling should play a central role in philosophy. In this introduction to our topical collection, we propose a small topology of computational modeling in philosophy in general, and show how the various contributions to our topical collection fit into this overall picture. On this basis, we describe some of the ways in which computational models from other disciplines have found their way into philosophy, and how the principles one found here still underlie current trends in the field. Moreover, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Computational Dynamics of Natural Information Morphology, Discretely Continuous.Gordana Dodig-Crnkovic - 2017 - Philosophies 2 (4):23.
    This paper presents a theoretical study of the binary oppositions underlying the mechanisms of natural computation understood as dynamical processes on natural information morphologies. Of special interest are the oppositions of discrete vs. continuous, structure vs. process, and differentiation vs. integration. The framework used is that of computing nature, where all natural processes at different levels of organisation are computations over informational structures. The interactions at different levels of granularity/organisation in nature, and the character of the phenomena that unfold (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  48. Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientiae 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. In this paper, I claim that mechanistic accounts of computation should allow for a broad variation of models of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  49. Extended Computation: Wide Computationalism in Reverse.Paul Smart, Wendy Hall & Michael Boniface - 2021 - Proceedings of the 13th ACM Web Science Conference (Companion Volume).
    Arguments for extended cognition and the extended mind are typically directed at human-centred forms of cognitive extension—forms of cognitive extension in which the cognitive/mental states/processes of a given human individual are subject to a form of extended or wide realization. The same is true of debates and discussions pertaining to the possibility of Web-extended minds and Internet-based forms of cognitive extension. In this case, the focus of attention concerns the extent to which the informational and technological elements of the online (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Computational Modeling as a Philosophical Methodology.Patrick Grim - 2003 - In Luciano Floridi (ed.), The Blackwell guide to the philosophy of computing and information. Blackwell. pp. 337–349.
    Since the sixties, computational modeling has become increasingly important in both the physical and the social sciences, particularly in physics, theoretical biology, sociology, and economics. Sine the eighties, philosophers too have begun to apply computational modeling to questions in logic, epistemology, philosophy of science, philosophy of mind, philosophy of language, philosophy of biology, ethics, and social and political philosophy. This chapter analyzes a selection of interesting examples in some of those areas.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
1 — 50 / 939